
LDOS™ & LS-DOS™
BASIC Reference Manual

Cat. No. M-40-061

Copyright © 1992 MISOSYS, Inc.,
All rights reserved

Copyright 1986, 1987, 1990 MISOSYS, Inc., All rights reserved

LDOS/LSDOS
BASIC Reference Manual

A reference to Interpreter BASIC

and EnhComp Compiler BASIC

MISOSYS, Inc.
P. 0. Box 239

Sterling, VA 22170
703-450-4181

BASIC Reference Manual

BASIC Reference Manual: Copyright 1986-1992 MISOSYS, Inc.
Combined Manual, First F.clition (1992)

All Rights Reserved. No part of this reference manual, may be
reproduced in whole or in part, either manually or automatically, by any
means, including but not limited to the use of electronic, electromagnetic,
xerographic, optical, network or BBS information and retrieval systems,
without the express written consent of MISOSYS, Inc. Unauthorized
reproduction and/or adaptation is a violation of United States Copyright
laws and may subject the violator to civil penalties or criminal
prosecution.

Program License Agreement: When accompanied by a Program disk or
disks. this package is sold for use by the original purchaser on his/her
machine only. If being purchased by a company, school, or other entity
with multiple machines, multiple users, or networked systems, single-copy
purchases for multiple-use are not allowed or supported. Please write
inquiring about our reasonable multiple-use and/or site-licenses or
purchase extra copies from your dealer. The program may be copied, but
for the purpose of archival copies only for the original purchaser's
computer.

Determination of suitability for any particular purpose whatsoever is the
sole responsibility of the end-user. No warranties, expressed or implied,
are given with regard to the suitability of this product for a particular
purpose or application. Software is made available on an as-is basis, and
MISOSYS. Inc. shall not be liable for any actual or consequential
damages. whether real or alleged, arising from the use of this software.

EnhComp, LOOS, and LSDOS are trademarks of MISOSYS, Inc.
MICROSOFr is a trademark of the Microsoft Corp.

II

Table of Contents

General Information ... 1
Important note to be read first. .. 1
Nomenclature used in this Reference Manual 1
About this manual ... 1
About BASIC variables•.....•.....................•.•.•..•........•..•• 2

Variable names 2
Variable TYPE designations 3

Introduction to Interpreter BASIC •....•....•.•..•.•.......•.......•..•.•..•....• 4
Invoking BASIC S
Default Extensions 7
File Blocking 8
Program Protection 8
Single Stepping a BASIC Program 8
Tape Access 9
High speed Load and Save 9

Introduction to Compiler BASIC ..• 10
Compiler BASIC Warranty 11
Compiler BASIC: General lnronnation 11
Compiler BASIC Directives 12
High Level Statements 13
High Level Functions 13
Compiler String Functions 13

Editing Interpreter BASIC Programs ... 15
Loading and Saving BASIC Programs 15
Abbreviated Commands 19
Initiating automatic input mode 20
Deleting program lines 21
Editing existing BASIC program lines 21
Deleting a disk me 24
Listing programs 25
Clearing the resident program 26
~am~a~ U
Copying, Moving, and Searching 26
BASIC Program Renumbering 29
BASIC Cross Reference Utility 31
Listing program variables 33

BASIC Compiler: Editing and Compiling 34
CED General lnfonnation 34

Invoking the REP/CMD utility .. 46

Iii

BASIC Reference Manual

Compilation from CED Editor .. 51
Runtime errors 52
Command-line compiling 53
Compiler-generated line numbers 54
Compiler Directives 54
Compilation mode versus Interactive RUN mode 59

Independent use of compiled programs 59

BASIC Statements and Functions 61
ABS 62
ADORA 63
ALLOCATE 64
ASC 65
ATN ~

&B 67
B~ ~
BKOFF, BKON 69
CALL 70
CDBL 71
CHAIN 72
CHR$ 74
CINT 75
CLEAR 76
CLOSE 78
CLS 79
CMD 80
COMMAND 84
COMMON 87
COMPL 89
CONT 90
cos 91
CSNG 92
CURWC 93
CVD 94
CVI 95
CVS 96
DATA 97
DATE$ 99
DEC 100
DEFDBL, DEFINT, DEFSNG, DEFSTR 101
DEFPN 102

Iv

DEFUSR
DIM
DOWN
DRAW
END
EOF
ERASE
ERL
ERR
ERROR
ERRS$
EXISTS
EXP
FIELD
FIX
FOR ••. NEXT
FRE
FUNCTION
GET
GOSUB
GOTO
&H
HEX$
IFTHENELSE
INC
INKEY$
INP
INPUT
INPUT#
INPUT$
INPUT@
INSTR
INT
INVERT
JNAME
LEFT
LEFT$
LEN
LET
LINEINPUT
LINEINPUT#
LINESPAGE

Table of Contents

104
105
107
108
110
111
112
113
114
115
116
117
118
119
122
123
125
126
129
130
132
133
134
135
137
138
139
140
141
143
144
145
147
148
149
151
152
153
154
155
157
159

V

vi

LMARGIN
LOAD
LOC
LOF
LOG
LPOS
LPRINT
LSET
MEM
MERGE
MID$0=
MID$
MKD$
MK1$
MKS$
&O
OCT$
ON exp

BASIC Reference Manual

ON BREAK
ON ERROR
OPEN
OPTION base
OUT
PAGELEN
PAINT
PEEK
PLOT
POINT
POKE
POP
POS
POSFIL
PRINT
PRINT#
PRINTUSING
PUT.
PZONE
RANDOM
RDGOTO
READ
REM
REPEAT - UNTIL

160
161
162
163
164
165
166
167
170
171
173
175
176
178
179
180
181
182
183
184
185
192
193
194
195
196
197
199
200
201
202
203
204
206
213
217
219
220
221
222
223
224

Table of Contents

RESET
RESTORE
RESUME
RETURN
RIGHT
RIGHT$
RMARGIN
RND
ROT
ROW
RSET
RUN
SCALE
SET
SETEOF
SGN
SIN
SORT,SCLEAR,KEY,TAG
SPACE.$
SPC
SQR
STOP
STR$
STRING$
SWAP
SYSTEM
SZONB
TAN
TIME$
TROFF, TRON
TYPE
UP
USING
USR
VAL
VARPTR
WAIT
WHILE WEND
WIDTII
WINKEY$
WPEEK
WPOKE

227
229
230
231
232
233
234
235
236
237
238
239
243
244
24S
248
249
250
25S
256
257
258
259
260
261
262
264
26S
266
267
268
269
270
271
279
280
282
283
284
28S
286
287

vii

WRITE
XFIELD

BASIC Reference Manual

288
289

Technical Information ... 291
BASIC Statements ... 291
String functions ... 297
Numeric functions ... 298
Numeric BINARY operators .. 301
String operators ... 302
Variable storage fonnat ... 302
Precision of math library•...................... 304
File buffer allocation ... 305
Compiler BASIC Support Subroutine Descriptions 306
Compiler BASIC Z80 Assembler ... 31 l

Z80 Source Code Inclusion in Programs 311
Access of BASIC variables and line numbers 312
Assembler Expression Evaluation 312
Operand Bases 314
Non-standard Z80 Instructions 314
Assembler Pseudo--OPs 315

Compiler BASIC error codes ... 316
Compile-time Errors 316
RUNTIME errors 317

Interpreter BASIC Error Codes .. 320
Error I>efinitions .. 320
Index ... 325

viii

General Information

General Inf ormatlon

Important note to be read first

Certain documentation pertaining to the programs referenced in this
manual may be available after the Reference Manual hes gone to press. If
so, There may be a file named "RBADMF/TXT" on the DOS or program
disk. Consult this file for details on additional support material and errata
as this file will contain important infonnation which may not appear in
this printed documentation. You should read this file by issuing the
command:

LIST README

Nomenclature used in this Reference Manuel

Throughout this reference manual. illustrations of communications with
the operating system and/or BASIC and you arc presented in various
forms. These arc:

EXAMPLE font used to depict keyboard entries typed by you

Message font used to indicate a message displayed by BASIC

screen font used in presentation of display screens

[optional] square brackets sunound optional keyboard entries

onloff a vertical bar is used to indicate either of two pennissible
entries, only one of which may be entered at a time.

About this manual

This BASIC Reference Manual is set up to be easily used. It is divided into
several different sections. The first section is composed of general
information about BASIC. It contains infonnation specific to "Interpreter
BASIC", common to both DOS version 5 and DOS version 6; it also
contains infonnation specific to a BASIC compiler called EnhComp,
which is available from MISOSYS. Throughout this manual, "EnhComp"
will be referred to as "Compiler BASIC". All BASIC commands which
refer to the entry and editing of BASIC programs will be covered in this

1

MISOSYS BASIC Reference Manual

section; thus, commands such as EDIT, LIST, and RENUM will be
discussed here.

The second section contains reference material on all the BASIC
statements and functions supported by the BASICs previously noted,
exclusive of any editing commands. They will be listed in alphabetical
order. Because differences in dialect occur across these implementations,
those differences will be noted as they appear in the Reference Manual.
Please remember that not every command, statement, or function is
supported by all implementations.

This manual is written as a reference guide only. All commands will be
explained in terms of the function which they serve. In no way will this
manual serve as a tutorial on implementation of these commands. There
are many such books currently on the market that deal with using a
"Microsoft compatible" disk BASIC for generalized and specific
applications. H you require tutorial aids for utilizing BASIC, contact your
computer dealer or book store for a list of such material.

About BASIC variables

Variable names

Variable names are limited to the character set <A-Z> and <0-9>;
Compiler BASIC also allows<@>. The first letter of the name must be an
alphabetic character, <A-Z>.

DOS 5 Interpreter BASIC variable names can be of any length; however,
only the first two characters are significant. The restriction on variable
names is that you cannot use the name of a BASIC Statement or Function
as the name of a variable. Also, a reserved word (the name of a statement,
operator, or function) is not permitted as a substring of a variable name.

Compiler BASIC, as well as DOS 6 Interpreter BASIC, pennit long
variable names (up to 40 characters in length), unique for their entire
length, and allow reserved words (BASIC statement and function names)
to be substrings of variable names. As such, it is required that all statement
and function names, as well as variable names be delimited by either a
<SPACE>, a special character not acceptable as a name (i.e. :,;"*+-/<>=),
or an end of line. The only restrictions on variable names are that you
cannot use the name of a BASIC Statement or Function as the name of a

2

General Information

variable. Thus, the following are all distinct variables: ABC, ABCDBF,
AB123.

Variable TYPE designations

Without any overriding type declaration, either explicit or implicit,
variables are of type single precision. As is standard with versions of
Microsoft BASIC, the following characters can be used as a variable name
suffix to explicitly designate the variable as being of the specific type
identified.

Type Char

%

$

Variable Type Identified

Integer variable
Single precision floating point variable
Double precision floating point variable
String variable

Variables may also be declared as being of a designated type by belonging
to the operand class of a DEFINT, DEFSNG, DEFDBL, or DEFSTR
statement. This is a declaration whereby the type is implicitly designated
according to the first character of the name.

Strings, as you're probably aware, are bytes which are sequentially sttung
together in a "string" and which can be assigned and manipulated using
string variables, which can hold a string of variable length. Interpreter
BASIC supports string lengths from O lo 255 characters. With Compiler
BASIC, this length can be from O to 32767, a significant improvement
over the 255 character limitation of interpretive BASICS.

3

MISOSYS BASIC Reference Manual

Introduction to Interpreter BASIC

Your computer contains two different types or memory: ROM (Read Only
Memory) and RAM (Random Access Memory). ROM contains the
routines necessary to get your computer started; ROM under DOS 5 may
also contain a portion or the BASIC interpreter. This ROM BASIC allows
you some capabilities of programming in the BASIC language. However,
ROM BASIC does not allow you to interface with your disk drives when
programming, and hence does not fully utilize your disk system.

The BASIC provided with your DOS is either an extension or ROM
BASIC and resides in RAM, or is a complete BASIC interpreter. DOS
version 5 BASIC utilizes commands found in ROM BASIC, and adds
commands to ROM BASIC which will allow you to interface your BASIC
programs with the disk operating system.

The disk-BASIC extension or complete "Interpreter" BASIC is contained
in files provided on your DOS "Master Diskette". Included are a primary
BASIC interpreter program and support utilities, some of which are
present as overlays. They are:

4

BASIC/CMD

BASIC/HLP

BASIC/OVl

BASIC/OV2

BASIC/OV3

Disk Basic program.

A file of HELP information for DOS version 5
BASIC

This fde contains the library command overlay
segment of the DOS version 6 BASIC
interpreter. It contains the CMD"N" renumber
feature overlay used with DOS 5 BASIC.

This file contains the routines for the DOS
version 6 BASIC line copy, move, find, and
search functions. For DOS version 5, it contains
BASIC's c;ross reference CMD"X" feature.

This overlay contains the BASIC handling or
error display and CMD"O" sort routines for
DOS version 5 BASIC.

Interpreter BASIC - Editing and Program Maintenance

BASIC/OV4 A DOS version 5 BASIC overlay to dump a list
of active variables

Invoking BASIC

This is the syntax to be observed when invoking BASIC.

Interpreter BASIC

BASIC [program/BAS] (F=n,M=n) 6
BASIC (B=sw,F=n,M=n,HIGH I LOW,E=off) command 5
BASIC• 5

program This may be the name of a BASIC program which
will be loaded and RUN; a /BAS extension is
required if the program filespec includes it.

Files=

Mem=

Optional parameter that specifies the maximum
number or files BASIC will be able to access
(1 to 15). If not specified, 3 is assumed.

Optional parameter to set the highest memory
address to be used by BASIC. All memory above
this address will be "protected". If not specified, all
memory up to HIGH$ will be available.

Note: "5" refers to DOS 5 BASIC; "6" refers to DOS 6 BASIC

5

MISOSYS BASIC Reference Manual

•

Additional DOS 5 Interpreter BASIC Parameters

Used to re-enter BASIC with the program and
the variables intact.

Blk=

Ext=

HIGH
or

LOW

Optional parameter that specifies Blocked file mode,
either ON or OFF. ON is the default.

Optional switch to tum off the default file extension
"/BAS" used with the BASIC commands LOAD,
RUN, MERGE and SAVE.

Model III parameter that sets the cassette baud rate,
either IIlGH or WW (HIGH=1500 and LOW=500).
The default is IIlGH. If IIlGH is used, the HIT APE
command must be issued prior to entering BASIC.

command This may be any valid BASIC command which will
execute immediately upon entering BASIC, such as
RUN"MYPROG/BAS", AUTOlOO, etc

The "command" specification is also optional. If not specified, you will
enter into BASIC, a welcome message will be displayed, and the BASIC
Reody prompt will appear on the screen. The "Reody" prompt will indicate
that BASIC is ready to accept any command that you wish to give it.

If you have rebooted the DOS 5 system, or have performed an exit from
BASIC to the operating system (usually done by issuing a CMD"S"
command), and wish to re-enter DOS version 5 BASIC, you may enter the
command:

BASIC•

at the OOS Ready level. Doing so will cause BASIC to be re~entered, and
any program that was resident in memory prior to performing the exit to
the OOS Ready level will remain intact. Be aware of the fact that if BASIC
• is used to re-enter BASIC from the OOS Ready level, any commands
which affect IIlGH$, or any commands that utilize memory (such as
BACK.UP and COPY) may cause your BASIC program to be overwritten

6

Interpreter BASIC - Editing and Program Maintenance

with other infonnation. For this reason, BASIC • should only be used as a
last resort

One of the following commands may be given if you wish to enter BASIC
with two files open and have memory protected up to location 61440
(X'FOOO'). Also, you wish to have the program MYPROG/BAS loaded and
RUN upon entering BASIC.

BASIC (Files=2,Mem=61440,) RUN"MYPROG/BAS" VS
BASIC (F=2,M=X'FOOO') RUN"MYPROG" VS
BASIC MYPROG/BAS (F=2,M=X'FOO0') V6

Issuing either of the ftrst two commands will produce the same results.
The second command above uses the abbreviations "F' and "M" for
"Files" and "Mem". Note that the extension for the program
MYPROG/BAS need not be specified since EXT is ON. The third
command is .used for DOS version 6 and will automatically run
"MYPROG/BAS". Also, realize that for any of the above commands, if
HIGH$ is lower than 61440 (X'POOO'), an "Out of Memory" error will occur,
and you will be returned to the 00S Ready prompt without entering BASIC.

Default Extensions

DOS version 6 BASIC provides no default file extension for use with
program management; however, it is recommended that you habitually use
an extension of "/BAS" to clearly differentiate your BASIC programs
from other files on your disks.

DOS version 5 BASIC allows you to utilize the default extension of /BAS
when issuing the LOAD, RUN, MERGE and SA VE commands. H the
EXT parameter is not turned OFF when entering BASIC, all filespecs used
with the above commands that do not have extensions will be assigned the
extension /BAS. If EXT is on and an extension is specified, the extension
used in the filespec will override the default extension.

If EXT is ON and the file in question has no extension, it must be
specified as "filename(' (i.e. the "f' will override the default /BAS). If the
EXT parameter is turned OFF when entering BASIC, all file extensions
will have to be specified.

7

MISOSYS BASIC Reference Manual

FIie Blocklng

BASIC provides a Blocked file mode (which has often been misnamed
Variable Length Files). This mode allows files with Logical Record
Lengths (LRL) of less than 256 bytes to be created and accessed. Any
record length from 1 to 256 bytes will be allowed, even if the record size
is not evenly divisible into 256. Blocked file mode is optional with DOS
version 5 BASIC; it is always in effect with DOS version 6 BASIC.

All blocking and de-blocking across "sector boundaries" will be performed
by 00S. In this way, user records can span across sectors to provide
maximum disk storage capacity. If the LRL is not specified when
OPENing a Random file, "256" will be assumed. Note that an LRL of "0"
will signify a 256 byte LRL.

If the Blocked file mode is ON, each file declared when entering BASIC
will take 546 bytes of memory (564 for DOS version 6 BASIC). If the
Blocked mode is OFF, each DOS version 5 file will take 290 bytes.

Program Protection

00S version 5 BASIC programs may be protected with an "Execute only"
password. This means that the program may be RUN, but not LOADed,
LISTed, LLISTed, or otherwise examined. Any attempt to break the
program execution and examine the program will cause the program to be
erased from memory, and the message "Protection hos cleared memory"
will be displayed. The DEBUGger will also be disabled during program
execution.

Slngle Stepping a BASIC Program

This 00S version 5 BASIC feature allows the BASIC programmer to step
through each program statement singly, with a "HOLD" after each step.
To invoke this feature simply do a nonnal pause (<SHIFT @>), which will
cause BASIC to go into a wait state. While continuing to hold down the
<SHIFT @> press the <SPACEBAR>, and the next BASIC statement will
execute. After execution of that statement the computer will immediately
go into its wait state again. Holding down the <SPACEBAR> will execute
statements at the normal keyboard repeat rate. If you press any key
without holding down the <SHIFT @>, normal program execution will
resume. Note that this feature also functions when listing a program.

8

Interpreter BASIC - Editing and Program Maintenance

Tape Access

Model I users need to disable the interrupts prior to performing tape l/0,
and must re-establish them after the inpul/output has been performed. To
disable the interrupts, use the BASIC command - CMD"T" -. To enable
the interrupts, use the command - CMD"R" -. See the BASIC Statements
and Functions Section for more information on these two commands.

Model III users need to do one of several things, depending on the type of
tape involved. If you are dealing with a 500 baud tape, you will need to
specify the "LOW" parameter when entering BASIC (Remember, if
"HIGH" or "LOW" is not specified, the default will be HIGH). If you are
dealing with a 1500 baud tape, you will need to establish the HITAPE
utility. For more information on HIT APE, refer to the DOS manual.

High speed Load and Save

When using the normal SA VE or LOAD program commands for tokenized
(compressed) BASIC programs, disk 1/0 should be two to three times
faster than standard Microsoft BASIC. Programs saved with the ASCII
parameter will not enjoy this speed increase, either when saving or when
loading.

9

MISOSYS BASIC Reference Manual

Introduction to Compiler BASIC

To begin with, the Compiler BASIC Development System comprises a
minimum of five files. These are BC/CMD, CED/CMD, REF/CMD,
S/CMD, and SUPPORT/DAT. These files are DOS-specific, i.e. there is a
specific version for DOS 5 and another for DOS 6. Both versions are
distributed on standard DOS 40-track double density data diskettes.

BC/CMD is the actual BASIC compiler. It normally produces a directly
executable Z80 machine language /CMD file on compilation finish, from a
user-supplied source program. This compiled code uses an efficient
internal pseudo-code for the most part.

CED/CMD is a special line-oriented editor included should you desire to
use it. You can use an editor that you're familiar with if you so choose;
however, Compiler BASIC expects its input to be in either pure ASCII
form, with line numbers required for every line, or in its own specially
tokenized format, which is provided by CED/CMD. In addition to more
efficiently storing your source code in memory and on disk because of
Compiler BASIC keyword tokenization, CED (through S/CMD) allows
you to merely type .. RUN" to semi-interactively compile and execute (if 0
errors ,are detected) your current program, returning control lo CED on
program completion or compiler error abort.

S/CMD is a supervisor program required for the interactive .. RUN". It is a
small program that automatically loads and executes CED/CMD when it is
itself executed. Although CED can be used without S/CMD invocation,
interactive RUNs will be disallowed.

REF/CMD is the utility for generating the reference report.

SUPPORT/DAT is a relocatable library module, in a special format,
which contains support subroutines needed for various BASIC instructions
and utilities. They are appended as needed to the compiled program, thus
assuring that no wasted utilities are included.

These files comprise the fundamental Compiler BASIC system.
SUPPORT/DAT must be available on one of your disks during every
compile. Compilation will automatically be aborted if SUPPORT/DAT
isn't available. It is recommended that SUPPORT/DAT reside on a
different drive (say, drive :1) than the compiled program destination drive
(say, drive :0). This greatly reduces excessive disk drive repositioning

10

Interpreter BASIC - Editing and Program Maintenance

during the compilation process. For the same reason it is a good idea to
separate the source and object files on different disks. If using an
interactive editor RUN, you can pre-create 1EMP/BAS, which holds your
source during compilation, 1EMP/CMD, which holds the compiled
program, and 1EMP/DAT, which holds the optional reference data file, on
different drives, to assure this.

Compiler BASIC acts as a translator between high level language, which
most people find easiest to program in, to faster ZSO machine language
(and pseudo-code), which most people find hard to program with.
Sometimes this translation is simple; sometimes it's pretty complex. An
experienced assembly language programmer can almost always produce
more efficient code than a compiler, including the so-called optimizing
compilers. Because a "core" of subroutines are included as needed, the
size of relatively short Compiler BASIC programs will be around 8-9k
larger than the source file. Lacking the time and/or money required to
write an assembly program from scratch to duplicate a high level program,
a compiler is a good compromise, and is quicker in any case.

Compiler BASIC Warranty

The Publisher of Compiler BASIC makes no guarantee as to the fihless of
Compiler BASIC, or programs generated by Compiler BASIC, for any
particular use, nor do we assume any liability whatsoever for any damages
that may arise directly or indirectly through the use of Compiler BASIC
and associated material such as this manual, including through
programming errors that may be found. Publisher's sole liability shall
consist of replacing magnetic media found defective by the buyer upon
first testing the distribution diskette. By using Compiler BASIC you imply
acceptance of these terms.

Compiler BASIC: General Information

Compiler BASIC is a compiler, which differentiates it from BASIC
interpreters included with your DOS. The essential difference is not so
much the structure of the languages themselves, but the manner in which
your computer executes any given program in the languages. The resident
BASIC in your machine must analyze program text every time it executes
a command. Compilers, however, translate program text into a format that
is better suited IO machine interpretation than a straight BASIC program.

11

MISOSYS BASIC Reference Manual

Some compilers compile totally to "pseudo-code", which is space efficient
but slow. Compiler BASIC is a true compiler; it compiles directly to Z80
machine language; however, an internal pseudo-code is used to link
program fragments with the system support library modules linked to a
program and called as subroutines.

Compiler BASIC is unique for DOS. Not only can the programmer take
advantage of a powerful high level language, but Z80 source code can be
intermixed with the language to any extent desired. Compiler BASIC, in
fact. is not only a compiler, but a Z80 assembler that allows powerful
algebraic expressions in source code statements, and takes advantage of
the high level language/machine language intennix ability, with special
functions that allow access to variable, line number, and label addresses.

Compiler BASIC is not guaranteed to translate your interpreted BASIC
programs unmodified into machine language. However, any differences
are slight and easily fixed to accommodate compilation. The large
repertoire of commands and functions make it likely that you will be
writing old programs over using these new features, rather than settling for
the capabilities of the disk BASIC interpreters.

Compiler BASIC retains many of the "nice" features of interpreted BASIC
that 'are excluded in other compilers. For example, the <BREAK> key is
functional during execution, if desired, and BREAKing a compiled
program will result in a BREAK message along with the source code line
number in which the interrupt occurred. Error messages at runtime display
the error code and the source code line number in which the error
occurred. Dynamic array allocation, up to fifteen dimensions [e.g. A(al,
a2, a3, ••. , a15)], is allowed, as is dynamic string space allocation. All
standard BASIC variable types are supported (integer, single precision,
double precision, and string). Strings are not limited to 255 characters in
length; 32767 is the new string length limit "FOR ... NEXT' constructs
may have more than one NEXT for a single FOR, since error checking (in
this case) is done at runtime, not at compile time. More than one
dimension statement for the same array may occur in a program at once,
but an error message will be issued at runtime if more than one of the
dimensions are executed.

Compiler BASIC Directives

Compiler directives are not "true" commands. They simply tell the
compiler, at compile time, to do some task. The directives pertinent to the

12

Interpreter BASIC - Editing and Program Maintenance

program code stream will be discussed here. All of the compiler directives
will be discussed in this section.

HIGH-MODE

This puts the compiler into High Level Compilation mode. 11IIlGH
MODE" is the default compilation mode. The compiler will be looking for
only "high level" BASIC commands and functions in this mode.

280-MODE

This puts the compiler into Z80 Assembler mode. High Level commands
will generate expression errors in this mode. Only valid Z80 opcodes and
assembler directives will be recognized. Source code line inclusion and
BREAK key checking will be disabled in this mode.

High Level Statements

Statements are instructions that perfonn some specific task, and exist as
independent entities; as opposed to functions, which are used inside
algebraic or string expressions, and are not used independently. Statements
and functions may be used in High Level mode only (the default mode of
the compiler.) They will generate expression errors in Z80 mode.

High Level Functions

Functions are used with expressions. They are also used with statements;
however, a function is never used alone. In general, functions can be
divided into two main categories: String and Numeric. Naturally, these
categories are further divided into fairly reasonable groups of related
functions.

Compiler String Functions

Compiler BASIC internally uses a memory-efficient string list technique
to manipulate strings. This process is transparent to the user; it is worth
mentioning because PRINTs or LPRINTs take up no extra string space
whatever when printing a string expression • except a small amount for
generative string functions such as HEX$ and BIN$. Additionally, string
assignments are fairly memory and time efficient due to the fact that string
literals and STRING$ functions take up no temporary string space during
the assignment; however, A$=A$+B$, say, requires that A$ and BS take

13

MISOSYS BASIC Reference Manual

up temporary storage space due to extensive moving around of A$ and B$
during the assignment. However, the same expression, A$+B$, would talce
up no temporary space if it was printed (PRINT A$+B$ or LPRINT
A$+B$), regardless of the combined length of A$ and B$. In the same
way, LPRINT "·-> "+STRING$(128,42)+" <··" would work with O bytes
cleared for string space.

14

Interpreter BASIC - Editing and Program Maintenance

Editing Interpreter BASIC Programs

Editing or Interpreter BASIC is performed, for the most part. while in the
BASIC interpreter. Compiler BASIC editing is performed using the CED
command. There are editing commands common to both Interpreter
BASIC and Compiler BASIC; however, in order to avoid confusion, all
Compiler BASIC editing facilities will be discussed via material
referencing the CED command; the material will duplicate some material
in this section.

Loading and Saving BASIC Programs

The LOAD command allows you to retrieve a BASIC program that has
been stored on disk, and place it in the computer's memory so that it may
be executed or edited. The syntax for the I.;OAD command is:

LOAD"filespec$"[,RJ Statement

filespec$ Designates the file te load; it may be a string
constant or expressi-. If represented as a string
constant, filespec mmt appear within quotes.

R Is an option to cause'tlte loaded program to be
immediately RUN.

The "R" parameter is optional; if usetl. the program to be loaded will be
executed after it is loaded, and all open files from a currently loaded
BASIC program will remain open. Perf'orming a LOAD without the "R"
option will cause any open mes to be clqsed.

Loading a program will always overwike any program in memory with the
program to be loaded. BASIC prognufls cannot be concatenated with the
LOAD command (see "MERGE" for program concatenation). The LOAD
command may be given from the EV\St Ready prompt, or can be issued
from within a program. If issued from within a program, the program
issuing the LOAD command will be overwritten by the program to be
loaded, and execution will be terminated.

15

MISOSYS BASIC Reference Manual

For example, after execution of the command LOAD"MYPROG/BAS"
any program which was in memory will be replaced by the program
MYPROG/BAS.

The SA VE command will allow you to save the program currently in
memory to a disk file. This will allow you to store programs on disk for
future use. The syntax for the SA VE command is:

SAVE"filespec•(,AJ
SAVE"filespec•(,AJ[,P]

Statement 5
Statement 6

filespec Is the file specification you wish to assign to the
program file. It may be represented as either a string
constant or a string expression.

A An optional parameter to save the me in pure ASCII
format. If not specified, the program will be saved
"compressed" or tokenized format.

P An optional version 6 parameter that causes the file
to be saved in an encoded format. Such programs
are protected from listing or editing.

As BASIC programs are being writt,en or edited, they are contained in the
computer's memory. The SA VE command provides a way to save BASIC
programs which are stored in memory out to a disk file, so that they may
be referenced at some later time via the LOAD or RUN command.

When the SA VE command is given, one of two things will happen. If the
filespec in the SA VE command represents a non-existing file, SA VE will
create a file with the filename, e~ension, and password specified, and
store in this file the BASIC pro~ currently in memory. If the filespec
in the SA VE command represents an already existing file, SA VE will
overwrite the existing file with the p-ogram in memory.

When the "A" parameter is not specified in a SAVE command, the
program in memory will be save<f to a disk file in its compressed form (i.e.

16

Interpreter BASIC - Editing and Program Maintenance

token codes will be used to represent the BASIC commands and line
numbers). If the "A" parameter is specified in a SA VE command, the
program will be saved to the disk file in pure ASCII (e.g. the command
PRINT will take up five bytes of disk storage, one byte for each
character).

Note: When using the "A" parameter to save a program, no line in the
program should exceed 240 characters in length. If a program is saved
with the "A" parameter and a line in the program is longer than 240
characters, the program, when loaded, will load up to the line which is
longer than 240 characters, and the rest of the program will be
inaccessible. A Direct Slolemenl in File error will also be generated.

It should be obvious that saving a program in ASCII will consume more
disk space than saving the same program in compressed form, but there
are certain situations where a program must be saved in ASCII. One case
where you have to save a program in ASCII is if you wish to perform a
MERGE of a BASIC program stored on disk with a program currently in
memory. The program to be merged in from disk must have been saved in
ASCII, or the merge will abort with an error.

The SA VE command may be given either from the BASIC Ready prompt,
or may be incorporated as a command within a program. If used within a
program, the program will SA VE itself, after which normal execution will
continue.

Suppose you have keyed in a BASIC program, and wish to save this
program out to a disk file. The drive you wish to store this me on is drive
: I, and the name you wists to assign to this file is GOODPROG/BAS. One
SA VE command that may be used to accQmplish this might look like this:

SAVE"GOODPROG/BAS: 1 •

If you wish to save this program in ASCII, the following command could
be used:

FS$=="GOOOPROG/BAS":SAVE FS$,A

Note in the above example that the filespec was represented as a string
variable. Also note that the "A" parameter must appear as a literal
constant, and cannot be expressed as a string expression.

17

MISOSYS BASIC Reference Manual

CLOAD and CSAVE

These statements are used to load or save a BASIC program stored on
cassette tape. The syntax is:

18

DOS 5 Interpreter BASIC

CLOAD[?] ["filename"]
CSA VE ["filename"]

Statement
Statement

filename Is the single-character name used to identify the
program file on tape. The name can be any alpha
numeric character other than""". The name is
mandatory for a CSA VE; if omitted for a CLOAD,
the first program found will be loaded.

? Used to compare a program on tape with the one
already loaded into the computer.

Interpreter BASIC - Editing and Program Maintenance

Abbreviated Commands

A few of the BASIC commands may be represented as single characters.
When using a single character command, the effect will be identical to
using the entire word. This abbreviated form is only acceptable when
typed on a command line, not in a program line or JCL file.

Interpreter BASIC Single-key edit commands

db Cursor up one line
<u> Cursor down one line
<¢::::> Cursor to first line

<==>> Cursor to last line
<.> Display current line
<,> Edit current line
<A> nl[,inc] AUTO: AUTO line nl with increment
<C> nl,n2 Copy line n 1 to line n2
<D> n1[-n2J DELETE: Delete 4ine(s) n l through n2
d.:>nl EDIT: Edit line III l
<f> Object Find all object (line#, var, keyword) 6
<L> n1[-n2) LIST: List line(s) nl through n2
<M>n1,n2 Move line nl to be line n2 5
<M> n1,n2,n3 Move lines n l-n2 to be follow n3 6
<S>Object Find next o~t (line#, var, keyword) 6

In the case of "A" for AUTO, "D" for DELETE, "E" for EDIT, and "L"
for LIST, these commands work exactJt as their full length counterparts,
except that no space is necessary bet'\feen the letter and the line nwn
bers. For example, "Ll00-300" is the same as "LIST 100-300".

Under DOS version 6 BASIC, pi may get "LIST OCATE",
"EDIT", "DELETE", or "AUT0''1 at the beginning of some line
in your BASIC program. This may1occur when you are loading in
a program from some other sour¢ in ASCII fonnaL If the first
word in the line is not a reserved/keyword, and the first letter of
the word is an "A", "D", "E", or fL", that first letter is expanded
to "AUTO", "DELETE", "EDrt, or "LIST', respectively. The
way to correct it is to edit the

I 19

MISOSYS BASIC Reference Manual

The following six "immediate" key commands are implemented by
pressing the indicated key as the first character in the command line. No
carriage return is necessary; the indicated action will talce place
immediately. Note that any of the following single key commands must be
the ftrst character entered after the .. Ready" prompt appears .

• (period) This will perfonn the same function as "LIST.<ENTER>",
which will instruct BASIC to list the currently active
line.

, (comma) This will perfonn the same function as
"EDIT.<ENTER>", which will instruct BASIC to enter the
"edit mode" for the currently active line.

db This will cause BASIC to display the next lower
numbered line in the program.

db This will cause BASIC to display the next higher
numbered line in the program.

<¢::> This will cause BASIC to display the first line of the
program.

<=» This will cause BASIC to display the last line of the
program.

Initiating automatic Input mode

The AlITO statement initiates autunatic input mode with line numbering.
Its syntax is:

20

Auto [Hnenum][,lncrementJ\ Statement

llnenum Is the BASIC line ~umber to start input; if omitted,
"1 O" will be used. 'i

i
Increment Is the interval betwttn line numbers which will

be assigned; if omitt4d, "10" will be used.
. !

\

Interpreter BASIC - Editing and Program Maintenance

A trrO is the standard way of initiating the input of program lines. This
procedure automatically displays the current input line number and awaits
your input. If the current line number is a line already in your program,
AtrrO will display an asterisk,"*" following the line number. The new
line typed will replace the previous program line.

When you complete your entry, the <ENTER> causes BASIC to add your
new program line to the existing program, if any, and displays the next
line number according to the increment.

When you have completed entering your program lines, press <BREAK> to
terminate AUTO and return to the BASIC prompt.

A program line may also be entered without using AtrrO by typing a line
number followed by the program line.

Deleting program lines

The DELETE statement is used to remove one or more lines of a program.
Its syntax is:

Delete line 1 [-llne2J Statement

line 1 A single line to delete or the first line number of
a range of lines.

line2 The last line number of the range of lines to delete.

For example, the statement DELETE 110 will remove the single line
numbered 110. DELETE 120-200 will remove all lines numbered 110
through the line numbered 200

Editing existing BASIC program lines

This EDIT interpreter BASIC state~ent is used to invoke the source
program line editor.

21

MISOSYS BASIC Reference Manual

Edit line Statement

line Is the number of the line you wish to edit.

The EDIT command allows editing of a particular line on a mostly
conceptual basis (as opposed to directly perceptual screen editing.)
Fundamentally, editing is done by single letters, which switch the editing
mode when appropriate. Initially, only the line number is shown; the
cursor is placed at the beginning of the line. This is tlie edit command
mode.

Summary or internal edit commands

<Space> Skip over next character, displaying it
<¢::> In edit mode: Move cursor left nondestructively
<¢::> In insert mode: Move cursor left destructively
A Leave the edit with the old line untouched
C<char> Change characters
D Delete character
H Hack line
I Go into insert mode
K<char> Delete up to <char>
L List rest of line and restart edit on new line
S<char>
X

Move cursor to occurrence of <char> after cursor
Move cursor to end of line, start insert mode

To non-destructively move the cursor over the line and to display it one
character at a time, press the <SPACEBAR>. The cursor won't move past
the end of the line once the last character has been displayed. To non
destructively move the cursor backwards, press the <BACKSPACE> key.
Once again, once the ft.rst character has been moved over, the cursor won't
move. The "space" and the "bacispace" can be seen as single letter
commands.

To list the entire line and tlien restart the edit at the beginning of a new
line, type <l>. Doing tliis twice will show you a "clean" version of tlie
line you're working with.

22

Interpreter BASIC - Editing and Program Maintenance

To insert new characters into the line, position the cursor to the desired
point (directly over the point of insertion) and type <I>. Then, any charac
ters typed will be inserted into the line at that point; what you see from the
line number on will be the start of the new line. Any backspaces in inser
tion mode are destructive. To stop the insertion and go back to the edit
command mode (the initial mode), press the <ESC> key (or <SHIFT-1l>).

To delete characters, position the cursor directly before the character to be
deleted and type <D> (in the edit command mode.) The character just
deleted wiU be printed between slash marks.

To totally restart the edit from scratch, and call up the line as it was
initially before your editing, type <.A> in edit command mode. The edit
will be restarted on the next line.

To "hack" the rest of the line at any given point, type <H>. The cursor
will then be placed at the end of the line and insert mode will be on.

To change a character "under" the current cursor position, type
<C><Chor>; tl1e character will be changed to "char".

To delete all characters from the character "under" the cursor up to and
including a particular character, type <K><char>.

To move the cursor to the end of the line and go into insert mode, type
<X>.

To move the cursor to a particular character in the line after the cursor
position, type <S><Char>. If the specified character is not on the line, the
cursor will be moved to the end of the lite. If it is, the cursor will be
placed "over" that character. In either case, edit command mode will still
be active.

Note that pressing the <ESC> key or iL, equivalent <SHIFT-1l> will almost
always abort the current command and cause a return to edit command
mode.

Once all editing has been complettd and you're satisfied with the results,
hitting <ENTER> will enter the aew line in place of the old one. If you
want to leave the line alone, type <.A> in edit command mode followed by

MISOSYS BASIC Reference Manual

<ENTER>; the line will be unchanged. Hitting <BREAK> will also cause
an escape without changing the old line.

As alluded to earlier, typing a number before most commands will cause
that command's action to be done that number of times. For example,
typing <1><2><SPACE> essentially causes the space command to be
done twelve times. H the end of the line isn't reached, the cursor will skip
over twelve new characters. To delete six characters, say, type <6><D>.
To "erase" a number just typed and essentially set it back to one, type
<ESC> or its equivalent

With the <S> and <K> commands, the specified number of characters will
be searched before the command's action is done. For example,
<2><SxA> will skip the cursor over the first "A" encountered in the line
and place it over the second one found (or the end of line, whichever
comes first.) And, say, <3><1<><1> will delete all characters from the one
.. under" the cursor to the third 'T' found in the line after the cursor,
inclusively - or until the end of the line is reached.

With the <C> command, the specified number of characters will be
modified. If the end of the line is reached, edit command mode is enabled.

Deleting a disk file

KILL will delete the designated file from the disk directory. Its syntax is:

KILL"filespec$. Statement

fllespec$ Designates the file to remove; it may be represented
as a string constant or a string expression.

The KILL command will allow you to delete a file from a disk directory,
making that file inaccessible, and freeing up the space on the diskette that
the file consumed. The KILL command functions identically to the DOS
commands .. KILL" or "REMOVE".

24

Interpreter BASIC - Editing and Program Maintenance

Suppose you wish to remove the file MYFILE/DAT from the diskette
currently in drive I, and free up the space consumed by that file. The
following command will perrorrn this function.

KJLL"MYFILE/DAT: 1 •

Realize that artcr the deletion is performed, you will no longer be able to
access any information which was previously stored in the file. Also note
that since the filespcc is being represented as a string constant, it must be
enclosed in quotes.

Listing programs

The "LIST" statement is used to display one or more lines of your source
program to the video screen; "LLIST' directs the listing to the line printer.
Their syntax is:

LIST [line 1 JH[line2J
LUST [llne1J[-J[llne2J

Statement
Statement

line 1 This is the first line of a range of lines to list.

line2 This is the last of a range of lines to lisL

Specifying "LIST' or "LLIST' with no parameter will list the entire
program. You can list a portion of the program using one of the following
forms:

line
llne
-llne
line 1-line2

List a single line
List from line to the end
List from the beginning to line
List from linel through line2

25

MISOSYS BASIC Reference Manual

Clearing the resident program

NEW deletes the current program from memory. Its syntax is:

There is no operandi Statement

Renaming a file

NAME is a DOS 6 interpreter BASIC statement used to rename a disk
me. It operates like the DOS RENAME command. Its syntax is:

DOS 6 Interpreter BASIC

NAME oldnam$ AS newnam$ Statement6

oldnam$ Is the current name of the file to be renamed.

newnam$ Is the new desired name.

Copying, Moving, and Searching

The following four commands are contained in the BASIC/OV2 file of
DOS version 6. The two edit commands of DOS version 5 BASIC are
contained in the BASIC/OV3 overlay file. This file must be present when
using these commands, or a file nol found error will occur. Like other
BASIC editing commands, the use of these will clear all variable values
and close any open mes.

The Copy command will duplicate a single line. Its syntax is:

le Num1,Num2

Nund is an existing line number to be copied. Num2 is the line number to
create, and must not already exist. No renumbering will be done after the
copy. H the line numbers are incorrect, an Illegal function call error will
occur.

26

Interpreter BASIC - Editing and Program Maintenance

The DOS version 6 BASIC Find command finds all references to a line,
variable or keyword. Its syntax is:

DOS 6 Interpreter BASIC

F Object

Object Is a line number, variable name, or keyword.

Object is either a line number, variable, or keyword. The space after the
"F" is mandatory when finding keywords. The resulting display will be all
line numbers containing the referenced object. When finding variables,
only the first to characters of the variable name will be significant. Also,
type declarations 1,%,#,$,(must be used. For example, the command
"FA" would not find A$ or AO.

The Move command moves a single line (DOS version 5 BASIC) or a
block of lines (DOS version 6 BASIC). Its syntax is:

Interpreter BASIC

M Num 1,Num2,Num3
MNum1,Num3

Numl

Num2

Num3

Is the number of the first line to move.

Is the number of the last line in a block of lines.

Is the line preceding the new block location or the
new line in the case of a DOS 5 BASIC.

6
s

Under DOS 6 BASIC, Numl and Num2 are existing line numbers and
define the block of lines to be moved. Num2 must be greater or equal to
Numl. NumJ is an existing line number and is the line to insert the moved
block after. The moved block of lines will be renumbered by one, and all
references to these lines (if any) will be corrected. If there is not enough
room in memory to move the lines, an Out of memory error will occur. If
this happens, do multiple moves of smaller pieces. If the line numbers are
non-existent or if there is not enough room between Num3 and its

27

MISOSYS BASIC Reference Manual

following line to fit the block, an Illegal function coll error wilt occur. For
example, if you had program lines 100 and 110, a block of lines moved
after line 100 could be no more than 9 lines long.

Under DOS version 5 BASIC, line Numl is moved to be line Num3. no
automatic renumbering of imbedded line number targets is done so you
will still have to adjust the targets of any GOTOs, GOSUBs, etc.

The DOS version 6 BASIC Search command will search the program
and display a reference to a line number, variable name, or
keyword. Its syntax is:

DOS 6 Interpreter BASIC

S [Object]

Object Is a line number, variable name, or keyword.

Object is a line number, variable or keyword. The first line containing the
object will be displayed. The space after the S is mandatory when
searching for keywords. The S with no object following wilt search for the
next occurrence of the previous object. Like the "Find" command,
variables are limited to 10 significant characters, and any explicit type
declarations must be used.

28

Interpreter BASIC - Editing and Program Maintenance

BASIC Program Renumbering

This DOS interpreter BASIC feature will renumber BASIC program line
numbers as well as correctly adjusting all line number references such as
GOSUB and GOTO. The syntax is:

Interpreter BASIC

CMD"N I llne,newline,lnc,last"
RENUM [newline][[,llneJ [,Inc] [,lastJ]

Statements
Statement6

Optional VS parameter to skip the complete scan
for errors before renumbering begins.

newline Is the new starting line number of the program; if
omitted, the default is line 10 for V6 and 20 for VS.

line Is the starting line number of the program lines to
renumber; if omitted, the entire program is
renumbered, i.e. line= 1, and last= 65529.

Inc Is the line number increment between lines; if
omitted, an increment of 10 for V6 and 20 for VS
is used.

last Is the last line of the program to be renumbered;
if omitted, renumbering occurs to the end.

When you have two existing program lines whose line numbers differ by
one, and you want to insert another line between them, you must change
the existing line numbers. The RENUM or CMD"N ... " statement allows
for renumbering program line numbers, which is a useful operation during
program development. This feature will allow you to renumber all or parts
of the BASIC program currently in memory. The lines to be renumbered
can be anywhere in the program. If used, all references in GOTO's,
GOSUB's, etc., will be properly adjusted. However, if the parameters you
use would result in the renumbered lines being out of sequence, a Bod
poromelers or Illegal function con error will occur.

29

MISOSYS BASIC Reference Manual

For DOS version 5 BASIC, you cannot have a line number zero (0) if
renumbering a program. Also, Both BASIC/CMD and BASIC/OVl must
be present on the disk, or a 11Progrom Nol found" error will occur. lf you do
not specify the exclamation point,"!", character, a full scan for errors will
be done before the renumbering starts. If errors do exist, no lines will be
changed. It is usually much easier to fix the errors before the lines are
renumbered! If you do specify the "I", any error found will still abort the
renumbering. However, all internal line number references will have
already been changed up to the line that cause the error. Do not use the "I"
parameter unless you are absolutely sure .that no errors exist.

For example, the statement:

RENUM 1000,500, 10,600
CMD"N 500, 1000, 10,600

V6
vs

will renumber the lines between 500 and 600 only, making new line
numbers starting at 1000 with an increment of 10.

30

Interpreter BASIC - Editing and Program Maintenance

BASIC Cross Reference Utility

The cross reference facility will allow you to produce a list of the variable
and line number references of an BASIC program. DOS version 5 provides
this facility as BASIC's "CMD"X"" statement; BREF/CMD is the DOS
version 6 BASIC cross reference utility which is executed at the DOS Ready
prompt, not from inside of BASIC. The BASIC program must not have
been saved in ASCII.

The DOS 6 syntax is:

DOS 6 Interpreter BASIC

BREF filespec ((Var=sw ,Une=sw,P=sw ,W=n))

Var=

Line=

P=ON

W=n

Cross references variables; the default is ON.

Cross references line numbers; the default is OFF.

Directs the output to a printer; the default is OFF.

Sets a width for printer output; the def a ult is 80.

The filespec is the name of the BASIC program. The VAR parameter
allows variables to be cross referenced. The LINE parameter includes a
cross reference of line numbers. The P parameter allows the listing to go
to a printer rather than the video. The W parameter can be used to specify
the number of columns for the printer (generally either 80 or 132, although
any values between 32 and 255 will be accepted).

Variable names will be displayed up to 14 characters. If the variable is
longer than this, the remaining characters will be truncated for display.
BASIC stores certain keywords in ASCII, and this makes them
indistinguishable from a variable. For example, the "AS" used in field
statemcnL1 is stored in ASCII rather than a token. This will cause these
words to be displayed in a variable cross reference list.

If there are more references than can be displayed on a single line, they
will wrap to the next line. This line will have an asterisk in column one to
denote the overflow.

MISOSYS BASIC Reference Manual

The command, BREF PROG/BAS, sends only variable references to the
video. The command, BREF PROG/BAS (LINE,VAR=-OFF), sends only
line number references to the video. BREF PROG/BAS (LINE,P,W=-132)
Sends variables and line numbers to a 132 column printer.

If you try to use a program saved in ASCII, a program saved in the
protected mode, or a non-BASIC program file, the error message, Nol o
IY\SIC program, will be generated by BREF.

If the program is too large to fit into your available memory, the error
message, Out of memory - con'l cross re(erence, will be generated by
BREF. The cure is to change your configuration to free up some memory.

The message, line nnnn, [rror in original program, may occur if there is a
syntax error in the original BASIC program. The line number should
correspond to that line in the program.

The syntax of the DOS 5 BASIC CMD"X" feature is:

DOS 5 Interpreter BASIC

CMo·x devspec/filespec -v I =-var,-L I =lnum,<fitle>"

devspec Is the device or file the listing will be sent to.
filespec If not specified, it will go to the video screen.

-V All Variables.

=var Only the variable specified.

-L All Line numbers.

•lnum Only the line number specified.

<tlHe> Is a title to be printed on the top of each page.

Both BASIC/CMD and BASIC/OV2 must be present on a disk or a
.. Program Nol found'' error will occur. You cannot have a line number zero
(0) if you wish to use the cross reference utility.

32

Interpreter BASIC - Editing and Program Maintenance

This list may be sent to any device in the system, such as the *DO (video
screen), *PR (line printer), etc. It may also be sent directly to a specified
disk file. Ir sent to a file, CMD"X" will use the default extension of rrx:r.
Parameters are allowed to determine which variables or line numbers will
be listed. If no parameter is specified, all variables and line numbers will
be cross referenced.

If you wish a title to be put on the top of every page in the list, it must be
specified between less-than/greater-than symbols in the command line.

listing program variables

The DOS version 5 CMD"V" BASIC extension can be used to dump a list
of active variables and their values and user defined functions while a
program is running (or after it was interrupted or ended). The syntax of
this command is:

DOS 5 Interpreter BASIC

CMD"V [*DO I ·PRJ [-SJ [-A] c-xr
*DO I *PR Designates the output to either device [*DO]

-S Restricts output to-scalars only.

-A Restricts output to array variables only

=x Restricts output to variables starting with .. x".

33

MISOSYS BASIC Reference Manual

BASIC Compiler: Editing and Compiling

CED General Information

The Compiler BASIC editor differs somewhat from the interpreter BASIC
editor. However, all internal editing commands (with the "E" command)
are the same. The significant difference between the interpreter BASIC
editor and the Compiler BASIC editor is that the latter recognizes two
types of line numbers: editing line numbers, and BASIC line numbers.
Any individual line may carry a distinctive line number, treated as a
BASIC line number; for this reason, standard ASCII BASIC programs can
be loaded into the Compiler BASIC editor. Every line is numbered from 1
through "n" in steps of one; also, where "n" is the total number of program
lines. Not every line has to have a BASIC line number, but with every line
is associated an edit number, representing its position relative to the
beginning. This carries the advantage of never having to renumber due to
line numbers too close together; the disadvantage lies in the fact that
"renumbering" occurs automatically whenever you insert, delete, copy, or
move lines - so you must therefore keep track of where you are in the
program.

If multiple (edit) line number expressions are needed by a command, they
are always separated by commas. An edit line number expression can
consist of a decimal number, or the letter "T'' to represent "1" (the top), or
"B" to reference the bottom (last) line. Note that "DET,B" deletes your
entire program (DEiete from Top to Bottom) - the same as a "NEW".

To recover from an unforeseen accident during a compiled program run,
recall that your source text is always saved in "TEMP/BAS" if
compilation was invoked from edit mode. All you have to do is reload it.

NOTE: Unless otherwise mentioned or clearly implied by the context,
references to line numbers are ED110R line numbers.

This command will print the integer result of the expression, "exp".

34

BASIC Complier - CED Editor and BC Compiler

This command will print the filename of the file currently being edited.

/ editor_line_number, BASIC_Dne_number

This command will add the specified BASIC line number to the line
identified by the given editor line number.

I < BASIC line number

This command will remove the specifted BASIC line number from
whatever editor line it is on (if it exists).

The "BASIC Line Hide" command will ~ppress the display of all BASIC
line numbers.

The "BASIC Line Show" command win restore the display of BASIC line
numbers.

35

MISOSYS BASIC Reference Manual

C slart_line,end_line,destination_line

This command will copy a block of lines from the "start_line" to the
"end_line" (inclusive), inserting at the "deslination_line".

DE nne 1 <,Hne2> (DL ... for BASIC line Is)

The "DE" command will delete a single line identified by "linel"; or the
multiple lines identified by "line l" through "Jine2", if "line2" is given.
Using "DE", the line numbers entered for the deletion refer to EDITOR
line numbering. If you wish to delete a line or lines according to their
BASIC line number(s), specify the delete command as "DL" in lieu of
"DE".

I RH

The "Editor Line Hide" command will suppress the display of EDITOR
line numbers. This is the default mode of CED.

The "Editor Line Show" command will restore the display of EDITOR
line numbers.

I ERROR encode (or ERR etr~Qdel
I

This command will display the full enor message of the given runtime
code denoted by .. errcode".

36

BASIC Compiler - CED Edllor and BC Compiler

I Fslrlng

Beginning at the current line+ 1, this command searches through the text
for the specified string. The line which contains the string is listed if a
match is found, otherwise "String nol found" is issued and the search stops.
Important note: Do not include any spaces after the "F' command unless
they are part of the search string.

Entering a NULL string for CED's Find and Search commands results in
finding/searching the next occurrence of the previous find/search string, if
any.

IGO
This command causes an exit from the editor and a return to DOS.

Edit <'string'> <linerange>
ED <'string'> <linerange>

for BASIC line #'s
for editor line #'s

The "EDIT" (or abbreviated as "E") conmand is the most sophisticated of
the edit commands, not surprisingly. It allows intra-line editing of a
particular line or set of lines on a mostly conceptual basis (as opposed to
directly perceptual screen editing.) Users will recognize the fonnat of the
command, since it is essentially the same as the line EDIT function of the
BASIC language on most 8-bit computers.

Note that with the "E" (or "EDIT") command, numbers refer to BASIC
line numbers; with the "ED" command, numbers refer to editor line
numbers. Otherwise, all material in this description is precisely the same
for both commands.

Fundamentally, editing is done by single letters, which switch the editing
mode when appropriate. Initially, only the line number is shown; the

37

MISOSYS BASIC Reference Manual

cursor is placed at the beginning of the line. This is the edit command
mode.

Summary of internal edit commands

<space> Skip over next character, displaying it
<¢:> In edit mode: Move cursor left nondestructively
<¢:> In insert mode: Move cursor left destructively
A Leave the edit with the old line untouched
C<char> Change characters
D Delete character
H Hack line
I Go into insert mode
K<cbar> Delete up to <char>
L List rest of line and restart edit on new line
S<char>
X

Move cursor to occurrence of <char> after cursor
Move cursor to end of line, start insert mode

To non-destructively move the cursor over the line and to display it one
charac~r at a time, press the space bar. The cursor won't move past the
end of the line once the last character has been displayed. To non
destructively move the cursor backwards, press the backspace key. Once
again, once the first character has been moved over, the cursor won't
move. The space and the backspace can be seen as single letter
commands.

To list the entire line and then restart the edit at the beginning or a new
line, type <l>. Doing this twice will show you a .. clean" version or the
line you• re working with.

To insert new characters into the line, position the cursor to the desired
point (directly over the point of insertion) and type <I>. Then, any charac
ters typed will be inserted into the line at that point; what you see from the
line number on will be the start of the new line. Any backspaces in inser
tion mode are destructive. To stop the insertion and go back to the edit
command mode (the initial mode), press the <ESC> key (or <SHIFT-1l>).

38

BASIC Compiler - CED Editor and BC Compiler

To delete characters, position the cursor directly before the character to be
deleted and type <D> {in the edit command mode.) The character just
deleted will be printed between slash marks.

To totally restart the edit from scratch, and call up the line as it was
initially before your editing, type <A> in edit command mode. The edit
will be restarted on the next line.

To "hack" the rest of the line at any given point, type <H>. The cursor
will then be placed at the end of the line and insert mode will be on.

To change a character "under" the current cursor position, type
<C><Chor>; the character will be changed to "char".

To delete all characters from the character "under" the cursor up to and
including a particular character, type <l<><char>.

To move the cursor to the end of the line and go into insert mode. type
<X>.

To move the cursor to a particular characte~ in the line after the cursor
position, type <S><Char>. H tile specified character is not on the line, the
cursor will be moved to the end of the line. IC it is, the cursor will be
placed "over" that character. In either case, edit command mode will still
be active.

Note that pressing the <ESC> key or its equivalent <SHIFT-R> will almost
always abort the current command and cause a return to edit command
mode.

Once all editing has been completed and you're satisfied with the results,
hitting <ENTER> will enter the new line in place of the old one. If you
want to leave the line alone, type <A> in edit command mode followed by
<ENTER>; the line will be unchanged. Hitting <BREAK> will also cause
an escape without changing the old line.

Optionally, you can, initially, specify two parameters. If you specify a
range of lines, a succession of edits will occur. In this case, after you type
<ENTER> or <A> to enter or escape Crom the edit, the next line will be
edited. However, typing <BREAK> will cause a return to the editor

39

MISOSYS BASIC Reference Manual

command mode.

With Compiler BASIC, you can also specify a string which will be entered
just as if you had typed it in at the beginning of the edit. For example,
entering:

E'L'l0

would edit line 10, displaying it first, because of the <l> edit command.
Note that the apostrophes are actual characters to be typed, not
documentation syntax marks.

This is really only useful when a range of lines is specified. Then, you can
automatically edit them without tediously typing the edit commands for
each line. A left bracket,°['', in the string is taken to mean an <ENTER>,
so entering, for example:

E'l;['l 5,20

would insert a semi-colon at the beginning of lines 15 through 20
inclusive, editing each line automatically. This particular command would
be user ul to temporarily convert a range of Z80 assembler source lines to
CO!P,ments. La~r. the semi-colons could just as easily be deleted by
entering:

E'D('lS,20

Note that if the parameter "T,B" (without quotation marks) is specified for
the line range, the entire program will be edited.

As alluded lo earlier, typing a number before most commands will cause
that command's action to be done that number of times. For example,
typing <1><2><SPACE> essentially causes the space command to be
done twelve times. If the end of the line isn't reached, the cursor will skip
over twelve new characters. To delete six characters, say,. type <6><D>.
To "erase" a number just typed and essentially set it back to one, type
<ESC> or its equivalenL

With the <S> and <K> commands, the specified number of characters will
be searched before the command's action is done. For example,
<2><S><A> will skip the cursor over the first "A" encountered in the line
and place it over the second one found (or the end of line, whichever

40

BASIC Compller - CED Editor and BC Compller

comes first.) And, say, <3><1<><1> will delete all characters from the one
"under" the cursor to the third "I" found in the line after the cursor,
inclusively - or until the end of the line is reached.

With the <C> command, the specified number of characters will be
modified. Ir the end of the line is reached, edit command mode is enabled.

I H line I <Jlne2>

This command will print "linel" (through "line2" if given) on your
printer. If the printer is unavailable, hit <BREAK> to escape.

I I line _number

This command will begin insertion of lines at the specified line number.
I lit <BREAK> to escape insert mode. Note that no BASIC line number is
attached to these lines.

I K:filespec

This command will "Kill" (remove) a file from disk. Note the use of the
mandatory colon,":", in the command syntax..

L:[(insert line) J filespec [,line 1. [,line21)

This command will load source text from disk into memory. Note the use
of the mandatory colon,":", in the command's syntax. Note also that line
numbers are EDITOR line numbers.· If "filespec" is omitted, the current
file is loaded. The "current" file is noted by "?F'. The simplest form of
this load command is, for example:

"L:TEMP /BAS•

TEMP/BAS will be either loaded into memory if there's nothing in the
text buffer, or appended onto the end of the current texL

41

MISOSYS BASIC Reference Manual

If "(insert line)" is specified, the disk file will be inserted into that point in
the current texL

If "linel" .. ,line2" is/are given, only "linel", or "linel through line2"
inclusive, is/are loaded from the disk file (relative line numbering is used).
For example:

l:(1 0)SOURCE 1 /BAS

inserts .. SOURCEl/BAS" starting at line 10.

l:CHESS80/BAS,50, 177

loads or appends lines 50 through 177 from the "CHESS80/BAS" file.
Loading stops automatically if less than 177 lines are in the file.

l:(184)NWAR/BAS, 15,40

This is a combination of insert/selective loading. Lines 15-40 from
"NW AR/BAS" are inserted at the current line number 184.

CED accepts either a pure ASCII file or its own tokenized format. Since
BC:;£8JI be used without regard to the CED editor, it also accepts either
pure ASCII files or CED's tokenized files as its source stream input.
Please don't expect to edit a BASIC program for use by BC with the
interpretive BASIC editor. The tokenization of interpretive BASIC will
create problems.

This command will list a range of lines to the video screen; numbers given
by ••nnerange" refer to BASIC line numbers.

lwsr--
42

BASIC Compiler - CED Editor and BC Compiler

This command will print a range of lines on your printer; numbers given
by "linerange" refer to BASIC line numbers.

M line 1,line2,destinollon_llne

This command is similar to "C"opy, except that lines are moved rather
than duplicated.

N (line[,lost[,newline[,inc]])]

111is command renumbers the BASIC lines of a program. Four optional
parameters are allowed. The first two are the current line range to
renumber. The third is the new starting number. The last is the line
increment. The default values are 0,65535,100,10. For example:

N 100,300, 10, 10

would renumber all lines in the range 100-300 inclusive; the first line then
being 10, the next 20, etc.

N ,,100,5

would renumber the whole program, starting at 100 and advancing in
increments of 5.

This command effectively does a delete of text from top to bottom
clearing out the entire text buffer. ·

43

MISOSYS BASIC Reference Manual

This command will begin appending lines without BASIC line numbers.

I P line 1 LHne2J

"P" lists "linel" or "linel through line2" to the screen. If no parameters
are given, then 15/23 lines starting with the current line are listed.

IQ [drlvenum]

This command will display a directory of files on the disk drive specified
as "drivenum". If "drivenum" is omitted, drive :0 is assumed.

"R" will replai=e "linel" or "linel through line2". The current line is
printed; insert prompt allows new replacement line to be entered. Once
line(s) are replaced, control passes automatically into insert mode.

I-
This command starts a chain of events if the compiler editor is invoked in
the supervisor mode (i.e. from "S/CMD''). First, source text is saved in the
file named, 1'1EMP/BAS". Then it's compiled into "lEMP/CMD". If the
compilation is successful, 1'1EMP/CMD" is invoked; if not, control passes
to the editor, with source reloaded. This also happens when the runtime
program terminates in an acceptable (END/STOP/BREAK) way.

44

BASIC Compiler - CED Editor and BC Compiler

I S[slrlngJ

This command operates the same as "Fstring" except the search starts at
the beginning of the text instead of line+ 1. Entering a NULL string for
CED's Find and Search commands results in finding/searching the next
occurrence of the previous find/search string, if any.

This command provides memory usage. It displays number of bytes used
and bytes free.

V[fJfilespec [line 1 [,line2J]

This command allows you to display lines from the specified disk source
text file. The "V" command permits viewing the "current" file if
"filespec" is omitted. Thus, V<ENTER> displays the current ASCII file,
whereas, V#<ENTER> displays the current compressed file. The "current"
file is noted by "7F".

W:[#Jfilespec [,line 1 [,line2)J

This command writes text from memory to the specified disk file in
compressed (tokenized) formal Note the use of the mandatory colon, ":",
identified in the command's syntax. If line p~eters are omitted, the
entire text is saved. If line parameters are given, only those lines are
written to the file. If "filespec" is omitted, the current file is written. The
"current" file is noted by "?F".

You can also use the syntax, W:flilespec<,line1<,line2>>, to write an
ASCII file (i.e one not tokenized).

45

MISOSYS BASIC Reference Manual

I X{replacement$/search$

This command will search and replace all occurrences or the search$
string with the replacement$ string. The search will begin at the current
line number. A <BREAK> stops the command. Note that only one
replacement per line is done. For example:

X/ent/ant

replace all occurrences of "ant" with "ent".

I Y•Hnespages[,pagetengthJ

This command will change printer forms control parameters (for LUST,
H) to do a top_of_form, "TOF", arter "linespages" lines. If "pagelcngth" is
given, this will define the number of lines total for each page of the paper
you're using in your printer (usually 66).

Invoking the REF/CMD utility

The Compiler BASIC REF utility provides a printed reference of memory
use for five aspects of your program: variables, user defined functions,
user defined commands, symbols and labels, and source line numbers. The
listings are generated from the reference data file created by the compiler
when the .. WO" compiler directive is invoked.

The general format of a REF/CMD invocation is:

46

BASIC Compiler - CED Editor and BC Compiler

Compiler BASIC

REF filespec[/DAT][,-V-l]

fllespec Is the reference data filespec.

-V Directs the REF output to the video screen.

-L Generates the symbol/label table. The default is
to suppress the symbol/label table.

The two command switches, "-V" and "-L", are optional. ff either or both
is entered, a comma must immediately follow the reference filespec. The
"-V" switch is used to have the reference output appear on the video
screen instead or the printer. The "-L" switch is used to have the
"symbol/label" table included in the reference output.

The following represents excerpts from a given reference report. Note,cthnt
all tables are alphabetized for easy reference. The five possible reports
will each start on a new page. The first report will list all BASIC
variables, identify each variable as to its type, and then list the starting
memory address used to store the variable's value. A sample report is:

CROSS REFERENCE REPORT u1ln9 CHEBYC014, --- VARIABL& LIST page 1,1

I • SINGLE, I• INTEGER, t • DOUBLE, $•STRING

Ill , SFDlH

I\Jt I 6045ft

A$ I 5F,,H

APt I 5FDSH

Alt 1 6055H A2t I 604DH

Bt(lfl I SFA9H BPf I SFDDH

Ct(ltl I SFAlH CNt 1 6089H CPf 1 5FB5H est 1 60ClR

HS I SF!IDH

LI I 50115H

NCI 1 60'5H

PAt 1 60BlH

Slt I 60A9H

STf 1 603DH

Tlt 1 60C9H

Xt 1 6019H

XAt 1 &OOH

II t 60AlR JI 1 6029H

NI I 6005H Nll t 6039ft

NT! I 6035ft Pf I 6099H

RHOf t 6091H RTf I 60D9R

Kl I COODR

N21 I 6009H

Plltllfl I SFCtH

St 1 602DH

S2t t 6081H srt t 5FF5R SPt t 5FBDH

SUtlt t 6011H Tt(lfl t SFClH Tlf(ltl 1 5FB1R

T2t I CODlR TNt(lfl I 5FB9R Wt I 5FFDH

Xlf I 60011

xrt , 6D7'H

X2f I COZlH

xct , &OUR

Xlt I 6011ft

Zlt I 605DR

The second report lists any functions which have been defined in your
program. The type of the function is listed as well as the memory address
of the function. This will look like the following:

47

MISOSYS BASIC Reference Manual

usn DBFIIIBD FUIICTIOII LIST------------------------- page 2.1

I• SiffGLB, I• IWTBGBR, f • DOUBLE, $•STRING

ff$ l 5230ft

The third report identifies any user-defined commands. It will list the
command name followed by the memory address of the command. If your
program has no user-defined commands, the report will look like the
following:

usn DBFIWBD COl1Hl\ffD LIST-------------------------- page 3.1

110 VSBR DUIIIBD ca!IWIDS

If you specify the "-L" switch, then the fourth report will generate a table
of all symbols and labels used in the program being referenced. This will
include all global symbols of SUPPORT/DAT library routines as well.
Thus, the nonnal mode of REF/CMD is to suppress this report. If you do
request it, it's listing will be like the following (truncated for brevity):

48

SYMIIOL/LI\BBL LIST---------------------------------- page 4.1
ffllLLOC • f5BCR ffBRKVBC • fSBIIH flBRL • f51AII

tlBUFADR • fSBDR

ttCLRWIIH • f5B4R

ffCURBUF • fSDBR

ffDIGBUF • 7BOSR

HCI • 7DFM

HCP• 17CDR

HDG - 17Blft

HDIGPNT • 7B02R

ffDPPffT • 7B04ff ffDRIIRTB • SSDSR

ncr - UDFR

HCT - 17CCR

flDTSlffS • 17898 ffDX2SINZ • 17B18

ffBDIT • 17C5R ttzr • 1712ft IIZWDJUHP • SSDBR

ftBRL - fSBlR ttBRR • SSZ3R tlBRRVSC • ,sora

SYMBOL/LABEL LlST con• t --------------------------- page 4. 2

f9R34 • 7091R fSR4 • S903R fSR45 • 73fFR fSR45A • 7374ft

f9R4f • 73DAR fSR47 • 740BR fSR71 - 74f7R fSSPSV • fSFlR

fSSRVSCTBL • f127R fSSUB - 76AAR fSTART - fSSFR

fSTll!PffT • fS,78

fSTRCffl'S • 6B31R

fSTRCHP • fll6R

ISTRPIIT • 61198 ITCHK • 1517R

fTMBRR • 64f7R fTRSTR • ICA2R ITRSTRL • SCAM

fTSTLIQ • IAZDR fllRCUR • SOBER IX2SIWB • 9225R fZTOP • 7471ft

SI.HTl • fr19R SLPIIT2 • 6F1Bft

BASIC Compiler - CED Editor and BC Compiler

The last table generated lists each BASIC source line number followed by
the memory address of the compiled line. This looks like the following
(again abbreviated for brevity):

SOURcg LIN! I\DDRgss LIST--------------------------- page S.1
00100 1 521DH 00110 1 S22!JH 00120 I 5240H 00130 I S24SR

00140 I 527!H 00150 I 528JH 00150 I S2CEH 00170 I S2DJR

00190 I 5302H 00190 I 5]39H 00200 I SJIBR 00210 I SJA2R

00220 I 53117H 00130 I SJABH 00240 I 5JDFR 00250 I 53F7H

00210 1 54J0H 00270 I 5457H 00210 I 5491\H 002!J0 I S4DH
00300 I 54ggn 00310 I 5511R 00320 I SSUH 00330 I SSS7R

00340 1 SSHH 00350 I 5571\H 00350 1 55!1EH 00370 I SSNIR

0ll40 I 5E0!R 01350 1 SUIR 0lllO 1 SBIIIH 01370 I HlER

01380 I sgzzn 01390 1 S!JSH 01400 1 51!5CH 01410 I SU4R
01420 I 51!6911 01430 I 5!70H 01440 I 5E74H 01450 I Sgl\OR

01460 I 51!8JH 01470 I 5!07H 01410 I Sl!P'lH 01490 I 5F04R

01500 I 5Fllll 01510 I 5FJ711 01520 1 5UlH 0l5J0 I 5F711H

01540 I 5F19H 01550 I 5r91H

49

MISOSYS BASIC Reference Manual

Compllatlon from CED Editor

The easiest way to compile a source program is to use CED to create a
Compiler BASIC program and then type RUN. For a "standard", plain
vanilla compilation, it's as easy as an interpretive BASIC RUN, although
much slower.

ff you have no test program handy, here's one to use. Type "S" at DOS
READY. CED will automatically be loaded. Then, using the same
procedure as the interpreter BASIC editor (i.e., typing all lines verbatim),
enter the following (yes, Compiler BASIC supports block graphics on a
Model4).

10
20 'Draws design on the screen
30
40 CLS
50 FOR Y=0 TO 47 STEP 3
60
70 'Plot lines moving in opposite
directions from opposing
80 'corners

"90 P-LOT S, 0, 0 TO 127, Y:PLOT S, 127, 47 TO
0,47-Y
100 NEXT
110 A$=WINKEY$:END

Once you've entered this simple program, simply type RUN and wait for
compilation to finish; this should talce around a minute and probably less i£
you're using hard disks or RAM disks.

If TEMP/BAS already exists, the message .. Replacing existing lile" will
appear: otherwise, "Creating new file" or something similar will be printed.
After your source has been saved to disk (notice that the Compiler BASIC
system is usually disk 1/0 bound), BC/CMD will be loaded.

After the initial message has been printed, the sentence "PASS f 1" will
appear. Compiler BASIC is a two pass compiler, so this is only the first
run through your source program. Soon the message .. Appending support
subs" will appear, along with the subroutine currently being linked.

50

BASIC Compiler - CED Editor and BC Compiler

Upon completion of the first pass, "PASS I 2" informs you of the start of
the last pass. When this is done, and the support routines have been linked
in from SUPPORT/DAT, you'll see various information detailing the
loading area in memory of the compiled program and the number of bytes
required by each data table (this need not concern you at the moment) If
all went well, there will be O errors, and TEMP/CMD, which holds the
compiled program, will be loaded and executed. After the design has been
created, the "A$=WINKEY$" instruction waits for a key to place in A$;
press any key to have CED, and your source code, re-loaded for another
round.

Although the programming cycle is somewhat slow, as with almost all
floating point, non-trivial compilers, this procedure is much less taxing
and irritating than the conventional edit, save, run compiler, link,
executed, etc. etc. cycle.

If things didn't go quite as smoothly as described; that is, if you got some
error messages while compiling the program, check your program. If it
was the one given, make sure you typed it in correctly. The error codes
(summary given elsewhere in this manual) should help you locate the
source of the problem.

If the enor was DOS related, an appropriate message will be given,
followed by a detailed DOS error message. The supervisor will
automatically give an error message if a fatal DOS error occurred (e.g.,
missing BC/CMD or SUPPORT/DA 1).

Note that, when using an interactive RUN, and barring a fatal disk error
like a missing sector, your current program will be safely in TEMP/BAS
should anything go drastically wrong; which can happen in such instances
as bad Z80 assembly code in your source file, and so on. Simply re-boot,
type "S", and load in 1EMP/BAS using "l:TEMP/BAS".

Note that due to the external file inclusion facility of •••oBT" or
"•INCLUDE", source files of any length can be compiled, up to free
memory limits in the compiler data tables and loadable machine language
file size. Due to the large amount of space available with CED (around
30K), this is unlikely to be a problem. •GET is usually useful for
including standard library subroutines or user functions/commands.

To re-iterate: If, during an interactive "'RUN", any errors are detected
during compilation, control reverts back to the editor at the end of the first

51

MISOSYS BASIC Reference Manual

pass, with the original source file automatically intact. Otherwise,
IBMP/CMD is loaded and executed. When the program is exited (via
END or STOP or BREAK) control passes back to the editor, with source
text reloaded, unless Z80 code or a compiler bug has caused a serious
problem.

CAUTION

Do not attempt to invoke from DOS Ready, a program compiled
from the supervisor mode. To generate a program which is to be
invoked from DOS Ready, re-compile the source program using
BC/CMD.

Runtime errors

A program will terminate, unless an "ON ERROR GOTO" is active, when
an error condition is detected. If "ON ERROR GOTO" is inactive, then:

RUNTIME [RROR COO[ccc IN SOURCE LIN[fxxxxx

will appear ("xxxxx" will be invalid if the source line was unnumbered or
if the line # information was suppressed in the compiled code with the
"NS'' directive).

If compilation was invoked from an interactive RUN, control will be
passed back to CED and the source reloaded If general compilation was
used (described in the following section), control will pass back to DOS
Ready.

A complete list of runtime errors is given later in this manual Note that
certain special DOS error codes, different than standard or unique codes,
will be flagged by being in the range 32-100, with 32 added to the original
code to produce the Compiler BASIC code. The DOS error code must be
between O and 68 to avoid confusion with other Compiler BASIC error
codes.

52

BASIC Compller - CED Editor and BC Compiler

Command-line compiling

The general format of a direct compiler invocation is:

Complier BASIC

BC filespec,saddr ,taddr,-dir-dir, .••

filespec

saddr

taddr

-dir

Is the source program specification.
The extension defaults to .. /BAS".

Is the specified program origin (start address).

Is the top or highest address to be used
by the compiled program.

Is a compiler directive.

As you can see, a number of variables can be changed in the invocation.
The default loading address for compiled programs is 52008 (DOS
version 5) or 2600H (DOS version 6). You can change this by simply
putting a comma after the filespec, followed by the desired address (in
hexadecimal format). If it is necessary to limit the top memory location
accessed by the compiled program, this limit can be specified as well (for
example, to limit access in a 32K RAM program, BFFF would be given,
the topmost valid memory location in a machine with 32K of memory).
The default "taddr" used would be that recovered from the system's
HIGH$ memory pointer at the time the compiled program was invoked.

You can change compilation parameters through a device known as
"directives" - so called because they are directions to the compiler, not
compilable instructions. Directives produce no code per se, although they
may affect the size of the final compiled program. Directives mecified in
the compiler invocation input are "global" directives, so called because
they affect the entire source program. You can also use directives l'rilbin
your source program, in which case dley're called "local" directives. Some
directives can be used both globally and locally. The rest are restricted to
either domain. Local directives are explained further on.

As an example, the "NO" global directive inhibits the generation of an
object file, usually to compile a program to check for errors, without over-

53

MISOSYS BASIC Reference Manual

writing an existing object file. In the case of the TEST/BAS program, this
goes as such:

BC TEST/BAS,.,-NO

Note the omission of the loading origin and memory limit variables. They
still retain their default values. However, the commas are necessary to
delimit the sentence . .. C TEST/BAS -NO" is invalid, as is "C TEST/BAS.
NO" and "C TEST/BAS.,-NO".

Multiple directives are delimited by dashes, as in:

BC TEST/BAS,8000,F000,-WD-WE

In addition to the global compiler directives, which may be used, in most
cases, both globally and locally, there are purely local directives, which
are prefixed by an asterisk (except for 280-MODE and HIGH-MODE).
This is indicated in the directive list which follows. Note: It is important to
realize that compiler directives are activated as they are encountered in the
input stteam in a purely linear manner from left to right; runtime program
logic has no effect on their activation. Directives valid both locally and
globally are prefixed with an "*-"; directives valid only within the
program (locally} are prefixed with only "*".

Compiler-generated line numbers

The compiler automatically generates line numbers in the executable
program generated by the compiler for any source line which has no
BASIC line number. These numbers start from .. 1 .. and are incremented by
"1". This helps identify which line was suspect during a runtime error trap.
These line numbers are only used for reporting purposes. Runtime error
reporting is not as useful without a reported line number. Your program
cannot reference these "pseudo" line numbers. Nothing prohibits your
program from assigning a BASIC line number the same as these automatic
line numbers; however, for maximum usefulness in error reporting, you
should avoid that practice.

Compiler Directives

BC supports the following compiler directives: GET, INCLUDE, lF
BNDIP, INJECT, LINK, LIST, NOLIST, NO, NOPRT, NS, NX, PRINT,

54

BASIC Compiler • CED Editor and BC Compiler

PRT, WD, WE, YS, YX, Z80. In the following paragraphs, directives
which are considered global in nature will be denoted with "(G)";
directives which are considered local in nature will be denoted with "(L)";
directives which are considered both local and global with "(B)"; and
directives which are purely local with "(P)''.

Remember, when you use a compiler directive within your source stream,
each must be prefixed with an asterisk and dash (''•-'') except for
PURELY LOCAL directives which are prefixed with an asterisk only.

·GET /"INCLUDE fllespec (P)

The two directives "GET' and "INCLUDE" are equivalent. They are used
to include a secondary source program file into the input stream. This can
be useful to provide a means of segregating your source program into
"modules" - each module in a separate file. At the conclusion of the
"INCLUDE" file, the source stream compilation will revert back to
original source program.*INCLUDE and *GET compiler directive. Note
that the filespcc must include any extension, as required.

IF exp {lines of source code) ENDIF <P>

The IF ... ENDIF directive pair provides for a conditional compilation. If
the expression, "exp", evaluates to a non-zero value, then the next lines of
source up to the "ENDIF" are compiled. Otherwise, a zero value of "exp"
results in the compiler ignoring the next lines of source until the "ENDIF"
statement is reached.

The "EQU" operator of "label" also allows you to define values for labels
to be used typically in conditional compilation. For example:

"DOSS" EQU 0:"DOS6" EQU 1
*IF DOSS
PRINT"DOS 5"
*ENDIF
*IF DOS6
PRINT "DOS 6"
*ENDIF

allows selective compilation of source program lines based on the value of
the label tested by the •IF assembler directive.

55

. MISOSYS BASIC Reference Manual

•1NJECTflleoame r{offsetrJower Hmltr.hlQh Hmltm <P>

This directive is used to insert a machine language load file into the
current compilation machine code output file. If "offset" is given, the file
will be loaded into memory at a new address of "offset+old address". To
selectively offset program loading - say, to avoid offsetting a load to
addresses in lower RAM - a "lower_timit" can be given (such as 4400H).
Similarly, an "upper_limit" for the offset can be given. Thus, to offset the
loading of TEST/CMD between all addresses in the range 6000H-7000H
by 8000H, use:

•1NJECT TEST/CMD(8000H,6000H,7000H)

This instruction would then inject TEST/CMD into the output stream or
the compiled program file. The DOS loader will then load TEST/CMD
into memory along with the compiled program; any parts or TEST/CMD
that would have loaded between 6000-7000 will now load into memory at
EOOO-FOOO.

·uNK fllesoecemodule #. module t ... J <P>

This directive causes the compiler to link a special link-type file into the
current compiled program output. Such a file would be provided and its
use documented by the publisher of Compiler BASIC. The
SUPPORT/DAT library file is an example of such a link file. In addition
to great disk space efficiency, link files are "assembled" much faster than
the original source.

UST CB>

This directive will list the source program on the video screen during the
second pass, with error messages.

NOUSTCU

This local directive will turn off the source program screen listing until a
subsequent LIST directive is detected.

56

BASIC Compiler - CED Editor and BC Compiler

NOPRTCD

This directive will tum orr the printer listing until a subsequent PRT
directive is detected.

NOCB)

This tells the compiler to refrain from writing the compiled program to a
disk file. You will find it useful lo speed up the compilation phase when
you only want to scan for detectable source code program errors.

This directive tells the compiler to inhibit the generation of source line
number infonnation in the compiled program's object code file. This saves
three bytes per source code line; however. runtime diagnostics will not be
able to then report the line number of a source line which causes a runtime
error. The compiler default is lo generate source line number information.

NXCB)

The compiler normally generates code which checks for the BREAK key
and handles 1RON at the conclusion of each source program statement. If
you do not desire this BREAK key handling, the NX directive will inhibit
the writing of this code. This will shorten the resulting compiled program
file. Note that the local directive 10YX" can resume the generation of this
handling code so that you can restrict certain segments of your program
from having the BREAK handlilft code.

"PRINTrlnJ r1nro·1 u r:1 rscchrexp)J rexpJ <e>

This directive is used to display a compilation message on the screen or
printed on a printer, depending on the current option switch settings. The
"#n" specifies the pass in whicli to print (if omitted, the second pass only
is implied). If "#n" is entered as "#0", then the message will print during
both passes. A "#1" or a "#2" entry indicate that the message will print
only on the first or second pass respectively. Anything in quotes is printed
verbatim. The "[,)" and [;) are print delimiters as in a normal BASIC
PRINT statement. For an entry of "$(chrexp)", the equivalent ASCII code
is printed. The field denoted as "exp" indicates a print expression.

57

MISOSYS BASIC Reference Manual

PRT

This directive will print the informative and diagnostic messages as well
as the source program to your line printer during the second pass, with
error messages.

W0(8)

This directs Compiler BASIC to write the reference data file upon
completion of the compilation phase. The file specification used for the
reference file will be constructed with the filename of the source program
and the file extension of "/DAT'. No drive extension will be appended.
An informative message will be issued advising you of the file's
generation. This file can be subsequently processed by the REF/CMD
utility to produce a program reference report.

WECB>

This directive will cause the compiler to wait for you to press a key when
an error has been detected during compilation. This allows you to observe
the error diagnostic message without worrying about it scrolling off of the
video screen. Any keystroke will cause a continuation of the compilation.

This directive informs the compiler to resume the generation of source line
number information (see directive NS).

This directive resumes the generation of the BREAK and 1RON handling
code. See the "NX" directive discussion.

ZOO<G>

This directive causes the compiler to assume that your source program
contains only Z80 assembly language. The compiler will then inhibit
writing of "extraneous" high level support code.

58

BASIC Complier - CED Editor and BC Compiler

Compilation mode versus Interactive RUN mode

The interactive RUN mode is useful for writing and debugging programs.
The /CMD file produced during this time, TEMP/CMD, is not intended to
be used without the S/CMD supervisor loaded and CED/CMD available on
the disk. It must not be invoked from DOS Ready.

To produce a final, compiled program once development is complete, you
must invoke BC/CMD directly from DOS level. The various optional
parameters or directives available have been described in the last section.
It might be desirable to disable the "debugging friendly" features in the
compiled program (source line number printed on error, BREAK detected,
TRON available) for your final copy; in addition to saving space, this will
make it impossible for someone to decode your program without a lot of
work.

This program will be in tl1e Conn of a fully independent "/CMD" file,
executable as easily as an other /CMD file. BC/CMD, S/CMD,
CED/CMD, and SUPPORT/DAT will no longer be needed to iun the
program.

Independent use of compiled programs

There are no restrictions (royalty payments) on compiled programs to be
distributed for NON SYSTEMS SOFTWARE or UTILITIES use, such as
a business program. For SYSTEMS SOFTWARE/UTILITIES (such as
another compiler, or a language, and so on - in general, anything designed
to be a programming tool), public distribution is PROHIBITED without a
written release from the publisher, or some kind of fee-per-copy
arrangement Without such a rel~e or arrangement, such distribution will
be considered copyright infringement of the SUPPORT/DAT subroutines.

MISOSYS BASIC Reference Manual

60

BASIC Statements and Functions

BASIC Statements and Functions

This section of the Reference Manual contains information on all
statements and functions - other than those considered to be editing or
programming aids - supported by the various BASIC interpreters and
compilers covered by the manual. This section lists each statement and
function strictly in alphabetical order so that you may more easily locate
the material covering a specific operation.

Since not every statement or function, or a sub-operation of a statement or
function, is supported by all versions of BASIC, this section will clarify
the specific level of support. To begin with, each command is summarized
in a command box which looks like the following box.

Supported BASIC

command and parameters

explanation of parameters

Type X

The top line lists the BASICs supporting the command. If some BASICs
have restrictions on the command, the specific syntax supported is
specified by the codes in the "x" field. These codes are: I=Interpreter
BASIC (both DOS 5 and DOS 6), 15=DOS 5 Interpreter BASIC, 16=DOS
6 Interpreter BASIC, C=Compiler BASIC (both DOS S and DOS 6),
C5=DOS 5 Compiler BASIC, C6=DOS 6 Compiler BASIC. If there is no
code in the "x" field, the statement or function is supported in its entirety
by the BASICs identified in "Supported BASIC". The type of command
will be either "Statement" or "Function".

As is common throughout this manual, optional entries are enclosed in
square brackets, "[)"; one of two permissible selections are shown
separated with a vertical bar, "thislthat".

61

BASIC Reference Manual

ABS ABS

This function returns the absolute value of its argument.

Compiler BASIC and Interpreter BASIC

ABS(exp) Function

exp Is a numeric expression.

ABS returns the absolute value of an expression. If the expression
evaluates to a non-negative value, that result is returned; otherwise
-expression. For example: ABS(-4) = 4; ABS(O) = O; ABS(l.414) = 1.414.

62

BASIC Statements and Functions

ADDRA ADDRA

This Compiler BASIC function obtains the absolute memory address of its
argument.

Compiler BASIC

ADDRA(addr) Function

addr Is a line number or a label.

ADORA returns the absolute memory address of a specified line number
or label. For example:

10 L=ADDRA (100)
20 A=PEEK(L) :L=L+l:IF A=0 THEN END
30 PRINT CHR$(A);:GOTO 20
50 Z80-MODE
100 "STRING":DB 'ASCII TEXT STRING',13,0

This prints a string defined in memory, accessible as the address of line
numbered 100. Alternatively, line 10 could be: L=ADDRA("STRING"), as
the value of the label "STRING" equates to ADDRA(lOO).

63

BASIC Reference Manual

ALLOCATE ALLOCATE

This Compiler BASIC statement is used to allocate the quantity of disk
file control blocks during run-time. Its syntax is:

Compiler BASIC

ALLOCATE exp Statement

exp exp is the number of file control blocks to allocate
in the range <1-15>.

Before any disk files can be OPENed under Compiler BASIC, file control
blocks must be allocated. ALLOCATE creates up to 15 control blocks.
Note that the blocks are allocated sequentially -- blocks allocated equal
the highest file buffer accessible by "OPEN".

For example, if a maximum of three files will be open at once in a
program, ALLOCATE 3 is executed before any OPENs are done.

File control blocks can be specified by a variable expression -- the number
of blocks to be allocated need not be a constant defined at compile time.
For instance, ALLOCATE F+ 1 is valid.

More than one "ALLOCAIB" can exist in a program -- but only one of
them may be executed or an error will be generated.

64

BASIC Statements and Functions

ASC ASC

This function returns the first byte of its string argument as an integer.

Compiler BASIC and Interpreter BASIC

ASC(exp$)

exp$ Is any string expression.

Function

ASC takes the lirst byte of the specified string expression and converts it
into numeric format. For example:

10 A$="ABC"
20 PRINT ASC(A$)

prints 65, the ASCII code of the letter "A", which is the first character in
the argument, A$.

65

BASIC Reference Manual

ATN ATN

This function obtains the trigonometric arc-tangent of its argument.

Compiler BASIC and Interpreter BASIC

ATN(exp) Function

exp Is a numeric expression in radian measure

ATN returns the arctangent of an angle assumed to be in radian degrees
measure. Under Interpreter BASIC, the result is a single precision value.
Under Compiler BASIC, it can receive, and return, either a single or
double precision value, of full precision. Thus, if the argument is double
precision, the result will be a double precision value.

66

BASIC Statements and Functions

&B &B

This Compiler BASIC function indicate that the argument is a binary
number rather than a decimal fonnat number.

Compiler BASIC

&BdO ... d 15 Binary number Function

&B signals a binary number in ASCII fonnaL For example, the assign
ments:

A a BAND &B11110101

and

Aa BAND245

are functionally equivaienL

67

BASIC Reference Manual

BIN$ BIN$

This Compiler BASIC function converts numeric expressions to a string or
binary digits.

Compiler BASIC

BIN$(exp16) Function

exp16 Is in the range <-32768 lo 32767>

BIN$ returns a 16 character ASCII binary representation of a selected
integer expression. For example, BIN$(4095) is equal to
"0000111111111111".

68

BASIC Statements and Functions

BKOFF, BKON SKOFF, BKON

These Compiler BASIC statements are used to provide <BREAK> key
control of your program.

BKON

BKOFF

Compiler BASIC

Statement

Statement

BKON and BKOFF can be used to effectively turn the <BREAK> key on
or off, respectively. They affect only the BREAK scan flag. BKON will
have no apparent effect if the "-NX" directive flag has been specified,
since the BREAK scan code calls will be left out of the compiled program.

An ON BREAK GOTO addr causes a jump to the specified line number
or label if the <BREAK> key is hit and the BREAK scan is activated. ON
BREAK GOTO O disables <BREAK> key branching, parallel to "ON
ERROR GOTO O". Causing an "ON BREAK GOTO addr" jump also
automatically disables <BREAK> key branching.

Example Program

5 ON BREAK GOTO 100
10 PRINT"HO HUM •.. "
20 FOR X=O TO 1E12: NEXT
30 PRINT"OH BOY, LET'S COUNT TO A QUADRILLION
NOW!"
40 END
100 PRINT"THANKS! SAVED FROM A FATE WORSE THAN
SCARFMAN ...• "

69

BASIC Reference Manual

CALL CALL

This command, similar to "USRn", is used to transrer control to a machine
language program; more than one parameter may be passed.

DOS 6 Interpreter BASIC

CALL addr [(parmlist)] Statement

addr Is the entry point of the machine-language routine;
addr cannot be an array variable.

parmlist Is a list of comma-separated variables whose values
are passed to the routine.

CALL is akin to "USRn". But where a "USR" can pass only a single
variable to a machine-language routine, "CALL" can pass any number of
variables. The quantity and type of the variables expected by the routine
must be matched by the calling program. The routine transfers control
back to the BASIC program with a Z80 "RET" instruction.

If from one to three parameters are passed in the pannlist, pointers to the
variables are passed in registers Ill.., DE, and BC for parameter 1, 2, and 3
respectively. Note that these are pointers to where the variables are stored
(see argument storage in "USR" and "V ARPTR'').

For a parmlist of more than three parameters, registers Ill.. and DE contain
pointers to parameter 1 and 2; register BC contains a pointer to a data
block containing the word addresses of pointers to parameters three
through the last parameter identified in the pannlist.

In the following example, a call is made to a subroutine at address
X'F123'; three variables are passed: a single precision, an integer, and a
string.

1000 ENTRYPT a &HF123
1010 CALL ENTRYPT (VARSNG!,VARINT%,VARSTR$)

70

BASIC Statements and Functions

CDBL CDBL

This function is used to convert its argument to double precision.

Compiler BASIC and Interpreter BASIC

CDBL(exp) Function

exp Is a numeric expression.

CDBL converts a numeric expression to double precision floating point
format.

71

BASIC Reference Manual

CHAIN CHAIN

This DOS 6 Interpreter BASIC statement is used to automatically load
and/or merge a BASIC program while passing current variables to it.

DOS 6 Interpreter BASIC

CHAIN [MERGE] •tilespec• [,line][,ALL][,DELETE llnel-llne2)

Statement

MERGE Specifies that lines of "filespec" will overlay like
numbered lines of the main program (see MERGE
statement for further details).

filespec Is the BASIC program, saved in ASCII format,
which is loaded.

fine Is the line number of "filespec" to begin running;
if omitted, execution begins with the first line.

ALL Designates that all variables in the main program
will be passed to the chained program. Without use
of AIL, variables can be passed with "COMMON".

DELETE Used usually with MERGE; specifies that linel
through line2 will be deleted from the current
program before the chained program is loaded.

CHAIN can be used by the programmer to overcome the limitation of
limited memory. By partitioning a program into separate modules, each
module can be selectively run by a main module; some or all of the
"current" program's variables can be passed to subsequent modules.

The statement, CHAIN •PROG2/BAS• is equivalent to RUN
•pROG2/BAS•; however, the statement, CHAIN "PROG2/BAS",1000
has no direct "RUN" equivalent. Equivalence could be achieved by having
GOTO 1000 as the first statement of PROG2/BAS. Thus, the "CHAIN"

72

BASIC Statements and Functions

statement allows you to control the statement of the chained program
which will be first executed. See "COMMON" for an example.

When the "MERGE" parameter is used with "CHAIN", the current
program is not erased from memory; lines of the chained program overlay
like-numbered lines of the program currently in memory - the program
issuing the "CHAIN" statement. This behavior is exactly like that of the
"MERGE" statement used alone. However, "CHAIN" adds the flexibility
of being able to pass the values of variables from the current program to
the chained program by using either the "ALL" parameter, in which all
variables will be passed, or by using identical "COMMON" statements in
each sub-program being chained. For instance, the statement,

CHAIN MERGE •pRQG2/BAS", 100,ALL

will merge the ASCII-saved program, PROG1./BAS, into the current one,
pass the values of all variables to the newly-configured program in
memory, and begin execution at line 100.

If you wish to erase a block of lines from the current program prior to
loading the chained program, use the ••oELBTE" parameter.
Conceptually, it is wise to collSider using a short main program with line
numbers in the range 10-999,. and use sub-program modules with line
numbers 1000 and above. Thus, you could completely remove all traces of
the current sub-program under control of the main module with a
statement such as:

CHAIN MERGE "SUB4/BAS", 1000,ALL,DELETE 1000-60000

This example will delete all lines numbered 1000 through 60000 from the
current program, merge in SUB4/BAS, pass all variables to the new
configuration, then begin execution at line 1000.

When you specify the "MERGE" parameter, existing defined functions
(i.e. with DEF FN),will be retained. This requires that functions defined by
"DEF FN" be positioned prior to the "CHAIN MERGE" statement. Also,
variables declared by "DEFINT", "DEFSNG", "DBFDBL", and
"DEFSTR" wiU be retained. Using "MER.GB" will also keep the current
"OPTION BASE" setting (for array base values); existing OPEN files will
be lert OPEN. None of tiJese actions occur if you omit the "MERGE"
parameter.

BASIC Reference Manual

CHR$ CHR$

This function converts a byte value to a one-character string.

Compiler BASIC and Interpreter BASIC

CHR$(exp8) Function

exp8 Is in the range <0-255>

CUR$ is used to convert a number between O and 255 into a string
character. CHR$(65) = "A ... for example.

74

BASIC Statements and Functions

CINT CINT

This function converts a numeric expression to integer format.

Compiler BASIC and Interpreter BASIC

CINT(exp) Function

exp Is a numeric expression.

CINT converts a numeric expression to integer type. Expression must be
in the range (-32768 to 32767).

75

BASIC Reference Manual

CLEAR CLEAR

The CLEAR statement is used to clear variables and allocate string and/or
stack space.

Compiler BASIC and Interpreter BASIC

CLEAR[exp] Statement C,5
Statement 6 CLEAR [,mem)[,stack]

mem

stack

exp

Sets the highest memory address to be used by
BASIC. All memory above this address will be
"protected". If not specified, all memory up to
IIlGH$ will be available.

Establishes the amount of space used by BASIC for
internal use handling FOR-NEXT loops, calls, etc;
if not specified, the default is 512 or I/8th the
available memory.

Designates the amount of string space to reserve.

CLEAR without expression simply zeroes all numeric variables, clears all
strings, and undimensions all arrays. With expression given, CLEAR
performs differently depending on the implementation. For Compiler
BASIC and DOS 5 Interpreter BASIC, "O.EAR" does all of the previous
and also redefines the amount of memory devoted to string storage, which
is 100 bytes by defaulL

If, for example, you had a program that stored a maximum of 500 strings
each with a maximum length of eight bytes, then you would need to at
least CLEAR 4000 (bytes). In reality, string related functions and
commands temporarily use some of the currently free string storage area
as a "scratch pad", so a buff er of 600 bytes is not unreasonable -- make it:
CLEAR4600.

Under DOS 6 Interpreter BASIC, CLEAR uses parameters of "mem" and
"stack". The "mem" parameter establishes the hi'ghest address used by

76

BASIC Statements and Functions

BASIC. This is identical to the "H,. parameter optionally passed when
invoking BASIC.

The "stack" parameter fixes the amount of internal stack space to be made
available from the free memory pool (i.e. that obtained initially from
?MEM+S 12). If the stack parameter is not specified, BASIC will establish
a stack space of either 512 bytes or one-eighth the available memory,
whichever is the smaller amount.

In the case of either DOS 5 or 6, since "CLEAR" will zero all variables
and close all files, it should only be done at the beginning of your program
before any variables have been defined.

77

BASIC Reference Manual

CLOSE CLOSE

This statement is used to close a file or files. The syntax for the CLOSE
statement is as follows:

Compiler BASIC and Interpreter BASIC

CLOSE [bufnum [,bufnum ...]] Statement

bufnum Designates a specific file to close. If no bufnum is
given, all open files are closed.

All open files must come to a close. CLOSE assures that all important
infonnation vulnerably sitting in RAM is written safely to disk. (Disk data
is usually unaffected during "I" type file access so accidentally not closing
an "I" type file is usually harmless. CLOSE them anyway.)

The "CLOSE" command is used in conjunction with the "OPEN"
command. After a file has been opened, it is capable of being read from
and/or written to. To disable this read/write capability of a disk file, a
"CLOSE" of the file must be done. In addition, "CLOSE" will update the
Mod flag, Mod date and end of file marker in the directory record of that
file (provided the me has been written to). See "OPEN" for more
information on me access.

With a list of file buffer numbers given, such as "CLOSE #, ... ,#", only
those files that have been opened with the specified buffer number (where
"#" represents the buffer number used to define a particular file in an
OPEN statement). Closed file buffers are unaffected by "CLOSE". With
no specific file buff er numbers listed, all open files are closed.

If you issue any command whicll will perfonn a "CLEAR" (such as
"EDIT', "CLEAR", or "RUN''), a global "CLOSE" will automatically be
performed for you. However, if yau issue a CMD"S", CMD"A", or
CMD"I" command, closing of any ~pen files will not occur. For this
reason, you should always make sme ftles have been closed prior to
exiting back to the DOS Ready prompt.

78 \

BASIC Statements and Functions

CLS CLS

This statement is used to clear the video display screen.

Compiler BASIC and Interpreter BASIC

CLS Statement

This statement simply clears the screen widl blanks (ASCII 32) and homes
the cursor. Only a portion of the screen will be cleared if scroll protection
is enabled.

79

BASIC Reference Manual

CMD CMD

The DOS 5 Interpreter BASIC CMD command allows you to perform
certain DOS library and utility commands without having to leave BASIC.
In addition, there are many distinct parameters that may be used in
conjunction with the "CMD" command which will allow you to perform
various different functions. To invoke a DOS library command from DOS
6 Interpreter BASIC, see "SYSTEM"; Compiler BASIC also uses
"SYSTEM". The syntax used for the "CMD" command is as follows:

DOS 5 Interpreter BASIC

CMD"command"
CMD"x"

command Is a DOS command to invoke.

Statement
Statement

X Is the letter assigned lo the special command.

CMD"command"

DOS library commands and utilities that do not affect HIGH$ may be
executed from BASIC by use of the CMD"command". The following
examples should illustrate implementatiou of this feature

CMD"DIR:O"
CMD"DEVICE"
CMD"LIST DATl/SC.R"
CMD"BACKUP :0 :r

\

Displaysa directory of drive :0.
Will display the device table.
Will list the file DATl/SCR.
Will perform the designated Backup.

After the desired DOS function has been ~ompleted, control will be
returned to BASIC with your program and vaijables intact. This type of
CMD command will function whether it is calleij from BASIC's command
line or from within a BASIC program. If perfom\ed from within an BASIC
program and an error occurs, or the CMD coin~and is aborted with the
<BREAK> key prior to being completed, the atipropriate error message
will be displayed, or the message "Syslem Comma~ Aborled" will appear,
and execution of the BASIC program in question \ijll be terminated. The

80 \

BASIC Statements and Functions

command may also be contained within a stting variable, such as the
following format:

A$="DIR :O":CMD A$

Apprmdmately 4K of free memory must be available for these types of
CMD commands, or an "Oul or Memory" error will occur.

This command will send the contents of the screen to the printer. This will
altow you to perform a screen print from within a program, without having
to physically initiate the screen print. CMD"*" may also be issued from
the BASIC Ready prompt. Note that the JKL parameter of the K.I/DVR
need not be active to utilize this command.

CMD"A"

This command will perform an abnormal return to DOS. Any active DO
command will be cancelled.

CMD"B","switch"

This command will enable or disable the <BREAK> key, with .. switch"
being either "ON" or "OFF'. A stting tcmstant or stting expression may be
used to represent the "switch".

CMD"D"

Turns on and enters the system deoogger.

CMD"D" ,"switch"

This command is similar to lhe CMD"D" command, with the following
exceptions. The switch "ON" wilJ tum on the system debugger, but will
remain in BASIC. Pressing the <BREAK> key (or <CLEAR> <SHIFT>
<D> keys if MiniDOS is acti,e) will cause you to enter the debugger. The
switch "OFF" will turn off~ debugger.

81

BASIC Reference Manual

CMD"E"

This command will return the last DOS error message encountered. If no
error has been encountered, the message "No Error" will appear. CMD"E"
may be useful when you wish to pinpoint the exact nature or an error.
BASIC's error dictionary is not as extensive as that found in DOS, hence
various DOS errors can produce the same BASIC error message.
Performing a CMD"E" will give you the exact error seen by DOS. This
may be of use when you get the BASIC error message "Disk full or write
prolecled" or "Disk 1/0 error".

CMD"I'' ,"command"

This command functions much the same as the CMD"command", with the
exception that control will return to DOS after the command has been
executed. Command can be represented as a string constant or a string
expression. If represented as a string constant, it must be contained within
quotes.

CMD"L" ,"fllespec"

This command will load a Load Module Format file (a machine language
program) into memory, much the same as the DOS LOAD command does.
Filespec may be represented as a string constant or a string expression. If
represented as a string constant, it must be contained within quotes.

CMD"N"

This command provides you with a program line renumbering function.
For the specific parameters involved with this command, please refer to
the section on Editing Interpreter BASIC.

CMD"O" ,numelem, firslelem

This command will allow you to sort a singly-dimensioned string array.
The sort will start at the element specified, '1]d will sort the number of
elements specified. The number of elements I() be sorted must not force
the sort past the end of the array. In order to utilize the CMD"O" function,
the BASIC/OV3 module must be present on a dijk in the system.

82

BASIC Statements and Functions

CMD"0",15,A$(10)
X=15:Y=l0:CMD"O",X,A$(Y)

Issuing either or the above commands will cause a sort to be perfonned on
the A$ array. Arter the sort has been finished, elements 10-24 will be
sorted in alphabetical order.

CMD"P",varlable

This command will return the printer status in the variable specified. The
variable may be any type, including a siting. The value will have the
bottom four bits stripped before being passed back to BASIC.

CMD"R"

Model I - This command enables the interrupts. It should be performed
after a CMD"r command has been issued~ For more infonnation see the
CMD"T" command.

Model Ill - This command will tum on the clock display.

CMD"S''

This command is the normsl way lo return to DOS Ready from BASIC.

CMD''T"

Model I - This command will disable the interrupts. It must be issued prior
to performing cassette tape f/0. After the tape l/0 has been completed. the
interrupts must be enabled with the CMD"R" command.

Model III - This command will tum off the clock display.

CMD"X"

This command provides you with a program cross rererence facility. For
the specific paramettrs involved with this command, please refer to the
section on Editing l11terpreter BASIC.

83

BASIC Reference Manual

COMMAND COMMAND

The COMMAND ... ENDCOM construct permits you to define new
Compiler BASIC commands.

Compiler BASIC

COMMAND name(varnst)
program statements
ENDCOM

Statement

Statement

name Is a string of characters in the set ("A"-"Z",
"0"-"9''), starting with ("A"-"Z'')

varllsf Is a list of {local) input variables.

Note: user commands are invoked by preceding the name with
a percent as in, "%name{operand list)".

COMMAND is a powerful statement that allows you to define new com
mands. A user-command definition consists of the "COMMAND" state
ment header. a definition body, and an "ENDCOM" statement. Once
defined, the user-command is easily and clearly referenced by the tech
nique of "%name(operand list)". The percent s~n acts as a user command
invocation symbol.

Any combination of numeric and string expressions can be specified as
user-command operands. For each operand specified in a user-command
invocation there must be a corresponding local variable in the user
command definition -- "local" because the existing values of the variables
listed in the definition are pushed onto the stack before they are assigned
to the operands given in the user-command invocation. Note: input
variables are restricted to simple variables and exclude array elements. So
ALPH$ is a valid local input variable, but NAME$(4) i$ not.

The "RETURN" command (inside a user-command definition), re-assigns
original values to local variables and exits from the user-command.

84

BASIC Statements and Functions

"COMMAND" definitions may not be nested. Also note that definitions
are "defined" at compile-time, so they may exist anywhere in the program;
they need not be executed. In fact, when encountered, a definition is
skipped over.

Example Program #1:

10 PRINT"FACTORIAL PROGRAM":PRINT
20 INPUT"f TO TAKE FACTORIAL OF";X
30 IF X<>INT(X) OR X<0 THEN

PRINT"INVALID t.":GOTO 20
40 %FACTORIAL(X) :PRINT X;"! = ";F
50 END
60 COMMAND FACTORIAL(Y)
70 IF Y<2 THEN F=l:RETURN
80 %FACTORIAL(Y-1) :F=Y*F:RETURN
90 ENDCOM

The preceding program necd!I a little explaining. The command definition
body, lines 70-80, is the heart of the program. Line 70 sets "F', the output
variable by choice, to 1 if "Y", the local input variable is less than 2; as it
should, as 11 = 01 = 1. Line f.0 is the clincher. "%FACTORIAL{Y-l)" is a
recursive invocation, so called because the user-command definition is
referencing itselfl The opinion of poor math teachers aside, definitions
that refer to themselves can be perfectly valid (with the important proviso
that at some point something specific must happen and the recursion, or
self-referencing, tenninates); in this case "%FACTORIAL{Y-1)" is
allowable because of the fact that "Y" is a local variable. Intermediate
values in the factorial calculation are preserved. F=Y•F is a perfectly
proper way to calculate the factorial, because Yl = Y • (Y-l)t, and F
(before the assignment F=Y•F) is {Y-1)1 because of %FACTORIAL{Y-l).
Naturally, a recursive invocation has to stop sometime for it to be useful,
and the "stopper" is line 70, which returns a "hard0 number (1) when Y is
finally decremented to 1. From then on, a sort of backlash occurs until the
factorial is finally calculated. Details are left 11 ••• as an exercise for the
reader".

The potential power of mixing Z80 assembly language with BASIC should
be evident in the next program.

85

BASIC Reference Manual

Example Program #2 for TRS-80 Model I or III:

10 FOR X=O TO 255
20 %FILL(X)
30 NEXT
40 END
45
50 COMMAND FILL(X%)
60 Z80-MODE
70 LO A, (&(X%)) :LO HL,3C00H:LD (HL),A
80 LO DE,3C01H:LD BC,03FFH:LDIR:RET
90 HIGH-MODE
100 ENDCOM

Screen memory is filled with all possible characters, making a rapidly
changing display. You Z80 programmers can figure tl1is program out. The
rest of you - what can I say? ('learn Z80 assembly language ... ')

86

BASIC Statements and Functions

COMMON COMMON

COMMON is a DOS 6 Interpreter BASIC statement used in conjunction
with the "CHAlN" statement to pass selected variables to a chained
program. Its syntax is:

DOS 6 Interpreter BASIC

COMMON var[,var, ...] Statement

var Is a scalar variable or array to be passed to a
chained program.

The "CHAIN" statement permits you pass all variables to a chained pro
gram by means of the "ALL" parameter. When you wish to pass a selected
set of variables, use an identical COMMON statement in each of the pro
grams being chained and don't use "ALL" in the "ClWN" statemenL

Scalar variables are identified by means of the variable name; arrays are
indicated by using the array name without a subscripL For example,

COMMON A$,B$,Co/o0

passes the two string variables, A$ and B$, and the integer array, C%Q.
Note the use of this statement in the following example:

10 REM This is program ONE/BAS
20 COMMON A$,B$,C%()
30 B$="ONE/BAS"
40 A$="program two"
50 C%(2)=C%(2)+100
60 PRINT "In program one with C%(2) • ";C%(2)
70 CHAIN "TWO/BAS"

Program ONE/BAS utilizes a "COMMON" statement to pass two scalar
variables, A$ and B$, and one array variable, C%0. This nonsense
program, designed solely to illustrate the use of "COMMON" with
chained programs, simply creates assignments for the two string variables
and proceeds to increment one of the array elements. The program then

87

BASIC Reference Manual

chains to the second program, TWO/BAS. Since ONE/BAS is also a
program chained from another, ONE/BAS needs to be saved in ASCII
format with a command such as, SAVE"ONE/BAS" ,A.

10 REM This is program TWO/BAS
20 COMMON A$,B$,C%()
30 PRINT "In ";8$;" with C%2() - ";C%(2)
40 CHAIN 8$,40

Program TWO/BAS utilizes a COMMON statement identical to
ONE/BAS; this enables it to retain the identified variables in common
with the chaining program. TWO/BAS simply prints the current value of
the array element incremented in ONE/BAS; its PRINT statement utilizes
the string variable assigned in ONE/BAS. TWO/BAS then chains back to
ONE/BAS to begin execution at line numbered 40. Note that 1WO/BAS
also must be saved in ASCII using SAVE"lWO/BAS",A.

When ONE/BAS is RUN, execution will swap back and forth between
ONF./BAS and TWO/BAS until you press the <BREAK> key or the value
of C%(2) overflows an integer value resulting in an error.

88

BASIC Statements and Functions

COMPL COMPL

This Compiler BASIC statement is used to complement a pixel.

Compiler BASIC

COMPL(x,y) Statement

x Is a numeric expression which evaluates to
the range <0 - 127> for 64-column screens
and <0 - 159> for 80-column screens.

y Is a numeric expression which evaluates to
the range <0-47> for 16-row screens and

<0 - 71> for 24-row screens.

"SET", "RESET", and COMPL fonn the set of the single-pixel-affecting
graphics commands. Note that screens that display 16 rows of 64
characters will display 72 rows by 160 columns of graphics pixels; screens
that display 24 rows or 80 characters will display 72 rows by 160 columns
or graphics pixels.

The COMPL command complements a selected graphics pixel, turning it
"ON" if it is "OFF" and vice versa The following program illustrates a
brief example of these graphics commands:

5 Y=23:RANDOM:CLS
10 FOR X=0 TO 127:SET(X,Y)
30 Y=Y+SGN(RND(3)-2)
40 IF Y<0 THEN Y=0 ELSE IF Y>47 THEN Y•47
50 NEXT
60 FOR X=0 TO 127:COMPL(X,23) :NEXT
80 FOR X=0 TO 127:RESET(X,23) :NEXT

The program ftrst plots a "pseudo-mountainous" proftle on the screen.
proceeds to "complement" all graphics dots down the middle of the screen.
and ftnally resets all pixels through the middle of the screen.

89

BASIC Reference Manual

CONT CONT

This Interpreter BASIC statement is used to continue a program after a
<BREAK>, "STOP", or "END".

Interpreter BASIC

CONT Statement

The CONT statement, usually useful only during program development,
allows you to continue execution of a program after it is prematurely
stopped by means of a <BREAK> key operation, programmed "STOP"
statement, or program "END" statement. Prior to the "CONT", you may
print the contents of variables or change the value of variables by means
of direct mode assignments. You may not edit any program line if you
wish to continue the execution of your program.

90

BASIC Statements and Functions

cos cos
This function obtains the trigonometric cosine of its argument.

Compiler BASIC and Interpreter BASIC

COS(exp) Function

exp Is a numeric expression in radian measure.

COS takes the cosine, in radians, of an expression. Interpreter BASIC will
return a single precision result. Compiler BASIC will return, in full
precision, a value of the same type as exp. Thus, if the argument is a
double precision type, the value returned is in double precision with full
significance.

91

BASIC Reference Manual

CSNG CSNG

This function converts its argument to single precision.

Compiler BASIC and Interpreter BASIC

CSNG(exp) Function

exp Is a numeric expression.

CSNG converts any numeric expression of any numeric type into a single
precision format number.

92

BASIC Statements and Functions

CURLOC CURLOC

This function obtains the position cursor or the video cursor.

Compiler BASIC

CURLOC No operands are required! Function

CURLOC returns the position or the video screen cursor. The position
obtained is a value from "O'' to "n" where "n+ 1" represents the total
number of characters displayable on the video screen (0-1023 for 16x64
and 0-1919 for 24x80). PRINT@ CURLOC, ... is nonnally equivalent to
PRINT

The value returned by "CURLOC" would be equivalent to the result or
(ROW(0)*NCOL)+(POS(0)-1), where NCOL is the number or video
columns, 64 or 80.

93

BASIC Reference Manual

CVD CVD

The CVD function unpacks the eight-byte string argument to a double
precision floating point number.

Compiler BASIC and Interpreter BASIC

CVD(exp8$)

exp8$ Is an eight-byte string expression.

Function

CVD's primary purpose is to convert a double precision number stored in
a file on disk as an eight-byte string back into double precision format. It
is the converse of the .. MKD$(exp)" string function ... MK.D$", described
elsewhere, converts a double precision numeric expression into an eight
byte string containing the double precision data. As a precise definition,

var= CVD(MKD$(vor))

Wheo using ••CVD", the eight-byte string should be a representation of a
double precision number stored in compressed format, typically retrieved
from a disk fde (in essence, it performs the opposite function of the
"MKDS" command). For more information on storing a double precision
number in compressed format in a disk file, refer to the "MK.0$"
command.

For example, assume that .. A$" is an eight-byte string which represents a
compressed double precision number. After the command,

Af-CVD(A$)

is performed, •'A#" will be set equal to the uncompressed number that
"A$" represents.

Realize that you are not limited in using CVD to assign a value to a
variable. The value generated by a CVD command may be ustd directly
(e.g. PRINT CVD(A$), or IF CVD(A$)<100000 THEN GOTO \000).

94

BASIC Statements and Functions

CVI CVI

The CVI function unpacks the two-byte string argument to an integer
number.

Compiler BASIC and Interpreter BASIC

CVl(exp2$)

exp2$ Is a two-byte string expression.

Function

The main purpose of CVI is to convert an integer stored as a two-byte
string on disk by the converse string function MK1$(exp) back into an
integer. As a precise definition,

var= CVl(MK1$(var))

The "CVI" command functions identically to the "CVD" command with
the following exceptions. The "CVI., command will convert a two-byte
string into an integer. This two byte Siring should be a representation of an
integer stored in compressed format. "CVI" performs the opposite function
of the "MK.I$" command. The value returned from the "CVI" function
will be an integer within the range of -32768 to +32767 inclusive. For
more information, refer to the "MK.I$" command.

For example, assume that .. A$" is a two-byte strin& which represents a
compressed integer. After the command,

Ao/o=CVl(A$)

is performed, "A%" will be set equal to the uncompressed number that
"A$" represents.

BASIC Reference Manual

CVS CVS

The CVS function unpacks the four-byte string argument to a single
precision floating point number.

Compiler BASIC and Interpreter BASIC

CVS(exp4$) Function

exp4$ Is a four-byte string expression.

The prime function of CVS is to convert a single precision number,
converted into a four-byte string by the "MKS$" string function and stored
in a disk file, back into a single precision number. To be precise, "CVS"
can be defined as,

var= CVS(MKS$(var))

The "CVS" command functions identically to the "CVD" command with
thefollowing exceptions. The "CVS" command will convert a four-byte
string into a single precision number. This four-:byte string should be a
representation of a single precision number stored in compressed format.
"CVS" perfonns the opposite function of the "MKS$" command. For
more information, refer to the "MKS$" command.

For example, assume that "A$" is a four-byte string which represents a
compressed single precision number. After the command,

Al=CVS(A$)

is performed, "Al" will be set equal to the uncompressed number that
"A$" represents.

96 \

BASIC Statements and Functions

DATA DATA

This statement allows you to declare a list of data items to be input with
the "READ" statement.

Compiler BASIC and Interpreter BASIC

DATA dotollst Statement

dof olist Is a list of numbers or alphanumeric strings, quoted
or unquoted; each item is separated by a comma.

DAT A provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a "DATA" statement does
nothing as program execution jumps over the data list.

"READ" is the mechanism used to read from "DATA" lists. 11R.EAD" has
tJ1e peculiar attribute that it can read a "DATA" item as either a string or a
number. An item can always be read into a string (as a string of
characters). An item can sometimes be read as a number - if it's a number.
READ A$ reads the next "DATA" item (say 1.618033) literally, character
by character, into "A$"; in this case an 8-byte string. READ A. using lhe
same item, stores into "A" lhe binary equivalent of the converted string
1.618033.

"RESTORE" and "RDGOTO" (Compiler BASIC) provide ways to point at
lhe desired data list. RDGOTO addr and RESTORE line, especially,
eliminate the wasteful process of reading and discarding lists of data to get
to lhe desired list in BASIC.

Initially, lhe first data item read, unless the data pointer is changed by a
RDGOTO addr or RESTORE line statement, will be the first data item in
lhe first "DATA" statement in the program.

07

BASIC Reference Manual

Example Compiler BASIC Program:

5 RDGOTO "PRIME"
10 READ TITLE$:PRINT TITLE$:PRINT:READ N
20 FOR X=l TO N:READ A:?A, :NEXT
30 END
35
40 "FIB"
50 DATA The first EIGHT Fibonacci numbers in
order
60 DATA 8, 1,1,2,3,5,8,13,21
70 "PRIME"
80 DATA The first NINE prime numbers in\
sequential order
90 DATA 9, 2,3,5,7,11,13,17,19,23

Example Interpreter BASIC Program:

98

5 RESTORE 80
10 READ TITLE$:PRINT TITLE$:PRINT:READ N
20 FOR X=l TO N:READ A:?A, :NEXT
30 END
40
50 DATA The first EIGHT Fibonacci numbers in
order
60 DATA 8, 1,1,2,3,5,8,13,21
70
80 DATA The first NINE prime numbers in
sequential order
90 DATA 9, 2,3,5,7,11,13,17,19,23

BASIC Statements and Functions

DATE$ DATE$

This function returns the system date as a string.

Compiler BASIC and DOS 6 Interpreter BASIC

DATE$ There is no operand Function

When using the DATE$ function, the system date is returned as an eight
character string of the form, "MM/DD/YY". Note that the YY field
captures years from 2000 through 2011 as "00" through .. 11 ...

For instance if today is Thursday, March 19, 1992,

PRINT DATE$

will display "03/19/92".

99

BASIC Reference Manual

DEC DEC

DEC is a Compiler BASIC statement used to decrement an integer
variable.

Compiler BASIC

DEC lntvar Statement

lntvar Is either an integer variable or an integer
array element.

INC and "DEC" provide a very quick way to increment or decrement a
specified integer variable, respectively.

Examples:

INC A%: 'A% == Al + 1
DEC B% (10): 'B1(10) = B1(10) - 1

100

BASIC Statements and Functions

DEFDBL, DEFINT, DEFSNG, DEFSTR

These DEFxxx commands are used to declare a group of variables to be of
a specific type: integer, single precision, double precision, or string.

Compiler BASIC and Interpreter BASIC

DEFDBL letters
DEFINT letters
DEFSNG letters
DEFSTR letters

Statement
Statement
Statement
Statement

letters Is a list of letters (A-Z) nagging all variables begin
ning with the specified letter(s). Multiple letters are
separated by a comma in the list. Two letters
separated by a dash indicates both letters and all
letters alphabetically between them (e.g. B-B
specifies B, C, D, and E).

The standard default type for variables, when no type declaration character
suffix follows a variable, is single precision. Type declaration characters
are: "%" = integer with two bytes of storage needed; "!" = single
precision with four bytes of storage nee&-..d; "$" = string with three or four
bytes of storage needed; and "#" = deuble precision with eight bytes of
storage needed). However, the above listed commands alter the default
types for selected variables -- all variables beginning with the specified
letter(s) in the list For example, DEFINT A-K instructs BASIC to assume
that all following untyped variables 'Slarting with one of the letters "A",
"B", "C", "D", "E", "F', "G", "H", ., .. , "f', or "K" are integers (integer
type).

Important Compiler Incompatibility Note:
DEFXXX statements are comi,iler pseudo-ops! They affect output
as they are linearly encounttted sequentially in a source line, not
as they are logically encouflfered during program execution. In
other words, runtime logic has absolutely nothing to do with
setting untyped variable type defaults, unlike interpretive BASIC.

101

BASIC Reference Manual

DEFFN DEFFN

This statement is used to define single-line user-defined functions.

Compiler BASIC and Interpreter BASIC

DEFFN nome(input variable list) = exp
DEF FN name(lnput variable list) a exp

Statement C,15
Statement I

Input variable Is any simple string or numeric variable. Arrays
are not allowed.

Note: DOS 6 Interpreter BASIC requires a SPACE character
between °DEF" and .. FN"l

There are many intrinsic functions provided for you in BASIC (i.e.
"VAJ..:', "S1R$", .. SIN", etc.). DEFFN or DEF FN allows you to define
your own functions capable of being evaluated from a single expression.
This may be of use when performing lengthy calculations at different
points in your program when you do not use the same variable names to
perform these calculations.

The function "name" is the name that you will assign to the function, and
has the same restrictions as those imposed on a variable name. The
function name must be of the same type as the value to be returned from
the function.

The .. (input variable list)" is a list of variables to be passed to the function.
The variable names used are local to the function, and act as dummy
variables. They will have no effect on other variables in the program
which have the same name. However, they must be of the same variable
type as the variable represents in the function (i.e. string, integer, single
precision, double precision). Also, if more than one variable is to be
passed to the function, they must be passed in the same order as that
defined in °(input variable list)" (see example below).

The .. exp" is an expression which represents how the variables passed to
the function are to be worked on.

102

BASIC Statements and Functions

This example will show how to create a function which will build a
filespec. This function will be passed three variables; the filename, the file
extension, and the drive specification. It will return a filespec in the form -
"filename/ext:d". A DEF FN statement to create such a function might
talce on the following format:

DEF FNFS$(X$,Y$,Zo/o):sX$+• r+Y$+•:•+MID$(STR$(Zo/o),2, 1)

The function name is "PS$", and is of string type, since a string value will
be returned from the function.

Three values will be passed to the function. The first two values passed
will be strings, while the third value will be an integer.

The function that will be performed is as follows: The first string passed to
the function will have a "f' added onto the end of it, after which the
extension, a":", and the drivespec will be added to the string, respectively.

The following example will illustrate how to invoke the function, as well
as changes that will occur to the variables intolved.

X$="HELLO":F$="MYPROG":E$="$AS":G\=2
Fl$=FNFS$(F$,E$,G\)
F2$=FNFS$(E$,F$,G\)

After execution of the above three lines, the following variables will be
assigned the following values:

X$="HELLO" F$=-"MYPROG" E$•"BAS" G\•2
Fl$="MYPROG/BAS:2"
F2$="BAS/MYPROG:2"

Note that the value of "XS" does not flange from the calling of this
function. Also note the difference between "Fl"$ and "F2$". The order in
which variables appear when invoking tJrcJ function detennines the value
that will be returned from the function.

As a final note on DEF FN, the value rdl$ned from the function can be
used directly, and does not have to be Al~red in a variable (e.g. PRINT
FNFS$(F$,E$,Go/o)).

\ 103

BASIC Reference Manual

DEF USR DEF USA

This command is used to define the starting address (entry point) of a user
created machine language subroutine. A DEFUSR statement must be done
prior to utilizing the machine language subroutine via the "USR"
command. The syntax for the "DEFUSR" statement is:

DEFUSR[n)=addr
DEF USR[n]=addr

Interpreter BASIC

Statement 15
Statement I

n Is a numeric constant (0-9) which is used to identify
the machine language subroutine. If omitted, a
value of "0" is assumed.

addr Is the address which represents the entry point into
the machine language subroutine.

Note: DOS 6Jnterpreter BASIC requires a SPACE character
between "DEF' and "USR"l

The number assigned to the subroutine, "n", must be the same as the
number used to reference the subroutine with the USR statement.

The entry address to the subroutine may be a constant (i.e. a hexadecimal
or decimal number), or it may be 1a numeric expression. Note that if the
starting address is specified as a. decimal number, and this address is
greater than 32767, it must be specified as the address minus 65536.

Suppose you have a machine laaguage subroutine that has a starting
address of &HFOOO (61440), and you wish to reference this routine as
machine language subroutine num\,er "2". To define this subroutine, one
of the following commands may bqgive~:

DEF USR2=-&HF000 /,
DEF USR2=- (61440-65538)
DEF USR2= (-4096)

104 I

BASIC Statements and Functions

DIM DIM

The DIM statement is used to allocate space for one or more arrays while
specifying the array dimensions.

Compiler BASIC and Interpreter BASIC

DIM orray(expllst) [,orray2(explist) ••• J

array

expllst

Is an array name.

Is an expression or list of expressions.
specifying the index limits of the array.

Statement

Interpretive BASIC defaults to an array si:ze of 10, if an array is referenced
without use of a corresponding "DIM". ·. ··

DIMensioning sets up the index limits (defining the acceptable range of
index values) and allocates memory for array data. For example:

10 DIM A(lO)
20 FOR X=O TO 11:A(X)•X*X:NEXT

will cause an error when X=ll. which exceeds the dimensioned limit of
10.

Multiple dimensions can \,e done with one "DIM" statement by separating
the arrays by commas - i.e. DIM X(60),Y(75).

Note that Interpretive BASIC arrays will. by default, atilize a zero base
value for the first array element, i.e. array elements are referenced as o. 1,
2, ... DOS .6 Interpreter BASIC provides the "OPTION BASE" statement
to predeclare the array base as either O or 1. If you prefer to always use
"l" as the first element index, then it is wise to include an "OPTION
BASE" statement to reduce array storage requirements.

All Compiler BASIC arrays must be DIMensioned before use, and all
DIMs must be in a single "DIM" statement! A compiler trap will abort

105

BASIC Reference Manual

compilation if an array reference was found without a corresponding
"DIM" statement; the variable name is displayed. The reason why arrays
must be DIM'd is that the space they occupy is dynamically allocated by a
SUPPORT/DAT subroutine call invoked by the DIM process. There is no
such restriction for Interpretive BASIC.

Compiler BASIC allows the actual index limits in the "DIM" statement to
be undefined at compile time (in other words, specified by variables and
resolvable only at run-time) -- unlike many other BASIC compilers. For
example, the statement:

DIM TAX(A,B)

is allowed by Compiler BASIC because the dimension will occur
dynamically when the compiled program is run, but disallowed by BASIC
compilers that need constants as index limits to precompute the amount of
space needed for all array elements.

106 \

\

BASIC Statements and Functions

DOWN DOWN

This Compiler BASIC statement is used to scroll the video screen down
one line.

Compiler BASIC

DOWN Statement

DOWN scrolls the entire screen down by one line, clearing the top line.

107

BASIC Reference Manual

DRAW DRAW

This Compiler BASJC statement is used to draw a "turtle graphics" figure.

Compiler BASIC

DRAW flag@ x,y USING arrayo/o(exp)

flag Designates the type of pixel action:

Statement

SET signifies unconditional SET;
RESET signifies unconditional RESET;
COMPL signifies pixel COMPLement.

x,y Is the coordinate of the starting point.
x is in the range (0-127)1(0-179);
y is in the range (0-47!0-71).

arrayo/o(exp) Is an integerarray element.

Essentially, DRAW takes a list,of line segment lengths combined with
rotations, specified in any speciQed integer array at any point in the array
(such as Ao/o(10) or Bo/0(18)), and plots a figure on the screen based on
the list. The concept is very similar to turtle graphics in the "LOGO"
language.

DRAW allows 256 degrees <J rotation and is properly scaled to assure
minimal distortion of rotated figures. That is, a box will still look much
like a box when it is rotated sai 60/256s of a circle, "60 ORA W degrees",
and redrawn. Furthermore, the lengths of its sides will be close to that of
the unrotated figure. In additioi to allowing 256 degrees, ORA W allows
non-integer line lengths and ~ing: line. lengths are specified in 1/256
block graphics pixel width units.\

!

To set up a turtle graphics fig~. dimension an integer array to at least
"4•L-l", where "L" is the requ~d number of line segments needed to
draw your figure. Each entry req¥res four bytes. encoded into a specified
integer array ("A%" in this exam~e) in the following manner:

\
\

\
108

BASIC Statements and Functions

"A%(x) = Bytel + 256 • Byte2" where .. Bytel" is n/256 fraction of line
length and "Byte2" is the integer part of the line length. Bytel and Byte2
contain the line length information: "BYTE2 + BYTEl/256" is the line
length.

"A%(x+l) = Byte3 + 256 • Byte4" where "Byte3" specifies the rotation
number in DRAW degrees (0-255) and "Byte4" is the ENTRY code.
Byte3 contains the number of degrees relative to the current orientation to
draw the next line. The ENTRY code specified by Byte4 is detennined
from the following table:

Code Number

0
1
2
3
4
5-255

Signifying

List end; tenninate DRAW
Draw line according to DRAW flag
Unconditionally SET line
Unconditionally RESET line
Unconditionally COMPL line
Ignore entry

10 DEFINT F:CLS:DIM FIGtnl.El(llO)
20 Y=O:FOR X=O TO 250 StEP 10
40 FIGURE1(Y)•X*6:'Line length• 6*X/256 units
50 FIGURE1(Y+l)•X+256:•~ot • x, entry code• 1
55 Y=Y+2
60 NEXT:' Continue until figure completed
70 FIGUREl(Y+l)•0:'0 entry to terminate list
75 'Draw it!

FOR I= 0 TO 255 STEP 16:ROT=I:'Rotate figure
80 DRAW SET @64,23 USING FIGUREl(O)

DRAW RESET @64,23 VSING FIGUREl(O)
NEXT I:A$•WINKEY$

Notice that "FIGUREl{0)" in lino 80 above specifies the DRAW to begin
interpreting entries at the first array entry. ORA W SET@ 64,23 USING
FIGURE 1 (2) would skip drawiog the first line in the figure specified by
FIGUREl(0). Drawing begins at location (64,23) and the object is SET on
the screen as per the DRAW flag "SET". To demonstrate the rotation

· available with "ROT', the figure is reset immediately after being drawn.

109

BASIC Reference Manual

END END

This statement is used to terminate your program.

Compiler BASIC and Interpreter BASIC

END Statement

Under Interpreter BASIC, .. END,, simply causes the program to cease
running. Such a program may be continued by using the immediate
"CONr' command.

Under Compiler BASIC, END causes a transfer back to DOS via the
@EXIT address.

Compiler BASIC provides the ability to terminate a running program and
automatically execute a DOS command. Note that this is not the same as
RUN"program"; it is similar to DOS 5 BASIC's CMD"l","command".
The syntax to use for this construct is:

ENo·command string•

For example, you could terminate the cpmpiled program and invoke a Job
file with a BASIC statement such as:

ENo·oo MYFILE (A=LISI)·.

Any open files will be automatically closed prior to terminating the
compiled BASIC program.

110

BASIC Statements and Functions

EOF EOF

EOF determines if "End of File" has been encountered. The syntax for
"EOF" is:

Compiler BASIC and Interpreter BASIC

EOF(bufnum) Function

bufnum Is the buff er number used to open the file.

This function is used to determine if the end ef file has been reached when
inputting from an open disk file. It is used J)rimarily in conjunction with
sequential files, but can also be used with rahdom files. EOF is a function,
and will return a "O" (FALSE) if the end o{ file has not been reached, or a
" -I" (TRUE) if the end of file has been reached. It can be us¢ with the
"IF" statement, and will determine the outcome of the "IF", as it will
return either a logical true or a logical false.

Assume that you have created a sequential file named MYDATA, and
wish to access the information in it, but you do not know the amount of
data in the file. The following progratll lines will illustrate how to use EOF
to determine when the last piece of dara has been accessed.

1000 OPEN"I",1,"MYDATA"
1100 IF EOF (1) THEN PIUNT"All data has been
accessed":END

xxxx
xxxx 'lines used to input and process data
xxxx

1500 GOTO 1100

Notice that the "EOF" command is used prior to inputting any
information. This will ensure that you will not try to input from an empty
file, or after the end of file lms been encountered. Either case would result
in an "Input past end" error.

111

BASIC Reference Manual

ERASE ERASE

This DOS 6 interpreter BASIC statement is used to eliminate one or more
arrays from a program. It's syntax is:

DOS 6 Interpreter BASIC

ERASE anay[•.•.]

array The name of an array to delete.

Statement

Under DOS 6 Interpreter BASIC. arrays which are no longer needed may
be eliminated to conserve memory space. Use the ERASE command for
this purpose. For example,

10 OPTION BASE 1
20 DIM BIGARRAY(2000)

500 ERASE BIGARRAY
510 DIM BIGARRAY(l000)

eliminates the array, BIGARRA Y, the._ re-dimensions it to 1000 elements.

112

BASIC Statements and Functions

ERL ERL

This function obtains the line number of the line containing an error.

Compiler BASIC and Interpreter BASIC

ERL No operands are required! Function

ERL is usually used inside an error-trapping routine that was invoked by
an error that occurred with an active .. ON ERROR GOTO". If the line
number is available, "ERL" returns the source line number in which the
error happened.

113

BASIC Reference Manual

ERR ERR

This function obtains the error code of the last error generated.

Compiler BASIC and Interpreter BASIC

ERR No operands are required! Function

ERR holds the code of the last error generated. As a consequence, it holds
useful information only after an error occurs, which implies that an "ON
ERROR GOTO addr" must be active to override the standard error
message and exit.

The Technical Information section of this Reference Manual contains the
error codes returned by "ERR".

114

BASIC Statements and Functions

ERROR ERROR

This BASIC statement is used for runtime program error control.

Compiler BASIC and Interpreter BASIC

ERRORexp8 Statement

exp8 Is a numeric expression which evaluates to
the range (0-255).

The ERROR command forces a runtime error to occur. Nonnally, an error
message "RUN UM[ERROR COD[ccc IN SOURCE LIN[f nnnn", or some
similar message. is printed and program execution is stopped. If an "ON
ERROR GOTO addr" is active, program execution branches to the adllress
specified by the ON ERROR GOTO statement on occurrence of a n11fime
error. 'ON ERROR GOTO o• disables this feature and causes the visual
error message previously mentioned.

115

BASIC Reference Manual

ERRS$ ERRS$

This DOS 6 Interpreter BASIC function obtains, as a string, the DOS error
message of the last DOS error generated. It's syntax is:

ERRS$

DOS 6 Interpreter BASIC

There is no operandi Function

ERRS$ obtains the error message string which DOS would normally
present for a DOS-related error; the string includes the DOS error number.
For example, consider the following program:

10 ON ERROR GOTO 1000
20 OPEN "I",1,"TEST/DAT:7"
30
1000 PRINT ERRS$
1010 STOP

If the TEST/DAT file did not exist, the error trapping routine starting at
line 1000 would print,

24-File not in directory
Break in 1010

116

BASIC Statements and Functions

EXISTS EXISTS

EXISTS is a Compiler BASIC function which will check for the
availability of the designated filespec.

Complier BASIC

EXISTS(fllespec$)

filespec$ Specifies which file to look for.

Function

EXISTS will check if the specified file is available for use. It returns a
logic 1RUE (-1) if the file is accessible.

10 PRINT"Enter the file to look for>";
20 INPUT F$
30 IF EXISTS(F$) THEN PRINT"Found file"

ELSE PRINT"File not found"
40 GOTO 10

"EXISTS" can be simulated with Interpreter BASIC as illustrated in the
following example.

1000 ON ERROR GOTO 1050
1010 OPEN "I",1,F$
1020 PRINT F$;" EXISTS":CLOSE 1
1030 ON ERROR GOTO O:RETURN
1050 PRINT F$;" DOES NOT EXIST"
1060 RESUME 1030

117

BASIC Reference Manual

EXP EXP

This function obtains the exponential of its argument.

Compiler BASIC and Interpreter BASIC

EXP(exp) Function

exp Is a numeric expression.

"EXP(exp)" is equivalent to 2.7182818 ... raised to the exp'th power. This
is the inverse of the natural log function; i.e. N=EXP(LOG(N)). If you're
not familiar with this random-looking number, it pops up all over the place
in engineering, scientific, and business problems.

Under Interpreter BASIC, "EXP" returns a single prec1s1on result.
Compiler BASIC returns, with full precision, a value of the same type
given.

"EXP(A)" will ,.return an Overflow/Underflow error if "A" is out of
bounds.

118

BASIC Statements and Functions

FIELD FIELD

The FIELD statement is used to partition the buffer associated with a
random access file, a type "R" file, and assign the segments of its record
buffer to strings.

Compiler BASIC and Interpreter BASIC

FIELD bufnum,exp AS var$[,exp2 AS var2$] Statement

buf num Is the buffer number used in the associated OPEN
statement. It may be a constant, or a numeric
expression. Bufnum must be in the range of 1 to
the total number of files allocated when entering
BASIC or via ALLOCATE, inclusive, and must
correspond to an open file.

exp Are numeric constants or expressions denoting·the
maximum length (in bytes) of the fielded variable.

var$ Are intermediate variables used to retrieve infor
mation from and pass information to the buffer.
They must be string variables.

The FIELD statement is used to partition the buffer associated with an
open random file. This partitioning allows you to divide a record up into
fields, where each field denotes a particular piece of information in that
record. The fielding of a record determines the length of each piece of
information in the record, and where this information will physically
reside in the record.

The value of these numeric constants or expressions must be in the range
of O to 255, inclusive (0-256 for Compiler BASIC). If denoted as numeric
expressions, these values must be enclosed within parentheses.

When information passes between the computer and the disk, a buffer is
used as a temporary storage place for this information. Inf onnation is
placed in this buff er with the "LSET' and "RSET" commands. Where this

119

BASIC Reference Manual

information is physically placed in the buff er is detennined by the
"FIELD" statemenL

The field statement will allow you to divide up the buffer into various
"slots", assigning a variable name to each of these slots. When infonna
tion is placed into or accessed from the buffer, it is done so by using the
variable name which was assigned to each slot in the "FIELD" statement.
The length of each of these slots is also determined by the "FIELD"
statement The total number of bytes to be fielded in a record must be less
than or equal to the number of bytes that a record will contain.

The following example will illustrate how the "FIELD" statement is used.

Suppose that you wish to deal with a file that will contain records whose
lengths will be 100 bytes. In each record, there will be 4 pieces of
information (fields). Field 1 will be 20 characters long, and will represent
the name of a person. Field 2 will be 10 characters long, and wilt represent
an account number. Field 3 will be 30 characters long, and wilt represent
address information. Field 4 will be 40 characters long, and will represent
an account description. The following "OPEN" and "FIELD" statements
will allow you to open such a file and field the buffer accordingly.

OPEN"R",1,"MYFILE/DAT",100
FIELD 1,~0 AS NA$,10 AS AC$,30 AS AD$,40 AS DE$

Using the above lines in a program will produce the following results. A
file by the name of MYFILF/DAT will be opened, and records in this file
will have a length of 100 bytes. A buffer for this file will be set up in
memory. The first twenty bytes of this buffer will represent name, and will
be referenced by the variable NA$. The next 10 bytes of this buffer will
represent the account number, and will be referenced by the variable AC$.
The next thirty bytes will represent the address, and will be referenced by
the variable AD$. The last forty bytes will represent the description, and
will be referenced by the variable DF.$.

More than one field statement may correspond to the same buffer. Vari:
able names used in a "FIELD" statement may only be used to pass infor
mation to or retrieve information from the buffer. Using fielded variables
for any other purpose will break the link between the variable and the
buffer, and the variable will not be connected to the buffer until the origi
nal "FIELD" statement is re-executed. For more information on passing

120

BASIC Statements and Functions

infonnation to and retrieving information from the disk, see OPEN, GET,
PUT, LSET, RSET, MKI$, MKS$, MKD$, CVI, CVS and CVD.

Under Compiler BASIC, "FIELD" is used with "R" type files; "X:' type
files use the corresponding "XFIELD" statement. "FIELD" partitions the
record buffer into segments accessible by string variables, providing a
means to read and write information in an orderly manner from or to any
record in the file. String array elements are permissible in the "'FIELD"
statement.

Compiler BASIC supports a field length of 256. The corresponding
"OPEN" statement should not include a reclen argument; the default is a
record length of 256. This allows you to field a 256-byte record in a single
string variable as illustrated in the next example.

For writing to a file, information is placed into the FIELDed variables by
means of the "LSET" and "RSET' commands. For obtaining non-string
data read from fielded string variables, the "'CVI(var$)", "'CVS(var$)", and
"CVD(var$)" functions are used. ~

;

The compiler BASIC "FIELD" statement will generate a fiefd overflow
error if the total length of the combined fields exceeds the reclen
established by the "OPEN" statement.

Example Program:

5 CLEAR 1000
10 ALLOCATE 1
20 OPEN "R",1,"TEST/DAT"
30 FIELD 1,256 AS A$
40 LSET A$=STRING$(256,".")
50 PUT 1,1
60 CLOSE

Line 5 gives enough room for strings to breathe. Line 10 allocates a single
file block. Line 20 opens the file for use; line 30 fields AS as entire record
buffer (recall that compiler BASIC allows 32Kbyte length strings). Line
40 fills the record buffer with dots, and line 50 writes the record buffer to
the first record in the file "TEST/DAT', followed by the necessary
"CLOSE" statement to neatly close the file and keep the disk directory
running smoothly.

121

BASIC Reference Manual

FIX FIX

This function truncates the non-integer portion of its argument.

Compiler BASIC and Interpreter BASIC

FIX(exp) Function

exp Is a numeric expression.

FIX returns the expression with the non-integer part stripped away. For
example: FIX(-1.6) = -1.

122

BASIC Statements and Functions

FOR ... NEXT FOR ... NEXT

These statements implement the typical .. FOR ... NEXT" loop construcL

Compiler BASIC and Interpreter BASIC

FOR indexvar = start TO end [STEP step]
NEXT [indexvar1 [,lndexvar2 ...]]

indexvar Is a loop index variable.

Statement
Statement

start Is any numeric expression; the initial value of the
loop index variable.

end Is any numeric expression; the terminating top or
bottom limit value of the loop.

step Is any numeric expression; added to the loop
variable in each iteration. Step may be negative, in
which case end is a bottom and not top limiL

FOR and NEXT are the standard, eternal, BASIC looping construct
statements. The "FOR ... NEXT" construct works by setting an index
variable, specified in the initial .. FOR •.• " statement, to an initial value, in
most cases unconditionally executing the loop code once (unless
programming "tricks" are used) until a "NEXT' is reached; then, unless
the step was specified with "STEP" in the "FOR ..• " setup, the step size is
one, and dlis is added to the index variable. If the step is positive, "NEXT"
checks for "indexvar > toplimit". If this is so, the statement following
"NEXT" is executed (the loop falls through). If "indexvar =< toplimit",
.. NEXT' branches to the statement following the initial .. FOR ... " setup,
establishing a loop to be continued until .. indexvar > toplimit". Note that
this might never happen, say if STEP= 0 and "toplimit > index var".

If the step is negative, "NEXT' checks for "indexvar < toplimit", the
converse or the positive step case. Otherwise, the previous explanation
holds true (exchanging"<" for•'>" and vice versa.)

123

BASIC Reference Manual

Under DOS 6 Interpreter BASIC. if the start value of the index exceeds
the end value (or vice versa for negative STEPs). then the body of the
.. FOR .•. NEXT'' will be skipped! Also, DOS 6 Interpreter BASIC
permits one and only one "NEXT" for each "FOR"!

The desired loop variable(s) can be specified after a .. NEXT" statement.
This is not necessary, however, as a .. NEXT" without a designated index
variable will close the most recent .. FOR" .. For instance, line 40 in the
example program could simply be: NEXT:NEXT.

Compiler BASIC allows double precision variables as loop indexes,
something not allowed in interpretive BASIC.

For one example of the .. programming trick" mentioned earlier, see
.. Programming idea #1" in the .. REPEAT ... UNTIL'' description.

Example Program:

5 CLS:PI • 3.14159
10 FOR R=l TO 20 STEP 4:' Radius of circle
20 FORT= 0 TO 2*PI STEP PI/20:' Parametric
var. in radians
30 X = R * 2 * COS(T)
40 Y - R * SIN(T)
50 SET(63+X,23-Y)
60 NEXT T:NEXT R: 'Could be: NEXT T,R
70 FOR X•l27 TOO STEP -1
80 COMPL(X,23+SIN(X*8*PI/127)*15): 'Draw sine
wave right to left
90 NEXT

This example program wilt draw a series of concentric circles on the
screen.

124

BASIC Statements and Functions

FRE FRE

This function obtains the amount of either the free stack space or the free
string space.

Compiler BASIC and Interpreter BASIC

FRE(exp) Function

exp Is either a string expression, flagging FRE to return
the amount of free string space left, or 0, flagging
"FRE" to return "MEM", the amount of free stack
memory.

The syntax box provides a complete explanation. FRE is used, essen
tially, to determine the amount of space left for string storage. "FRE(O)" is
numerically equivalent to "MEM". ···

Under DOS 6 Interpreter BASIC, the value returned is the amount of free
memory.

BASIC Reference Manual

FUNCTION FUNCTION

These Compiler BASIC statements are used to define multi-line user
defined functions.

Compiler BASIC

FUNCTION name(input var list)
statements
ENDFUNC

Statement

Statement

Input var Is any simple string or numeric variable. Arrays are
not allowed.

Note: FUNCTIONs are invoked via: "!name(args)"

"DEFFN" is used to define a function where a single "BASIC statement"
can be entered on a single line to operate the function. FUNCTION is a
powerful statement that allows new multi-lined functions to be defined.

A user-defined multi-line function consists of three parts: A "FUNCTION"
statement header; a user-function body; and the "ENDFUNC .. statement.
A defined function call is invoked by an exclamation point character
followed by the function name and operand list, composed of any
combination of numeric or siring expressions separated by commas and
enclosed in parentheses. For each operand there is a local variable in the
function definition's input variable list. When a user-function call is made,
the contents of the input variables are pushed onto the stack and then set
equal to the specified operands.

Once the function computation is completed, the function value is returned
with the statement "RE11.JRN value". Any desired number of RETURNS
can be included. A "RE11.JRN" statement without operands returns a value
of 1.

As with user-commands, user-functions can be recursive; recursion depth
limited only by free memory. Definitions may not be nested. Note that
unlike Interpretive BASIC, user-functions are "defined" at compile-time

126

BASIC Statements and Functions

and need not be executed to become "active"; in fact, definitions, if
encountered, are skipped over.

Example Program #1:

10 INPUT"# To take factorial of";X
20 PRINT X;"!,.. ";!FACTORIAL(X)
30 PRINT:GOTO 10
35
40 FUNCTION FACTORIAL(K)
50 IF K<2 THEN RETURN 1
60 RETURN K*!FACTORIAL(K-1)
70 ENDFUNC

The preceding program computes the factorial of a number using a
recursive function. The recursive call talces place in line 60. The following
program is simpler!

Example Program #2:

10 FOR X=l TO 10
20 PRINT"X, SQUARE(X): "; X, ! SQUARE (X)
30 NEXT
40 END
45
so FUNCTION SQUARE(K)
60 RETURN K*K
70 ENDFUNC

127

BASIC Reference Manual

Consider the possibilities of directly using Z80 assembly language in a
function definition. Here's one example:

Example Program 1#3:

10 INPUT"String to ENCODE";A$
20 B$=!ENCODE$(A$)
30 PRINT"Encoded string: ";B$: PRINT: GOTO 10
40
50 FUNCTION ENCODE$(T$)
60
70 'Add 20 to each byte in string
80
90 Z80-MODE
100 LD IX,&(T$) :' IX=> String parameter block
110 LO C, (IX+O) :LOB, (IX+l): LD L, (IX+2) :LO
H, (IX+3)
115 'BC= string length, HL => String
120 "ENLOOP":LD A,B:OR C:JR Z,ENDENC:DEC BC
130 LD A, (HL) :ADD A,20:' Number added is mostly
arbitrary
140 LD '(HL) ,A:INC HL:JP ENLOOP
150 "ENDENC"
160 HIGH-MODE
165
170 RETURN T$
180 ENDFUNC

The main point of the preceding program is the Z80 routine, not the
simple encoding method (even a fairly dumb cryptographer could break
this scheme in about five minutes). The speed of the efficient machine
language routine makes the encoding time imperceptibly small for short
strings. More complex, non-trivial encoding routines would benefit from
the speed of a Z80 routine even more. Keep in mind that Compiler BASIC
allows strings of up to 32767 bytes in length.

U you copy the body of function ENCODE, modify ADD A,20 to SUB 20
and you have (guess what?) function DECODE (left as "an exercise for the
reader").

128

BASIC Statements and Functions

GET GET

GET reads a specified disk file record into a record buffer.

Compiler BASIC and Interpreter BASIC

GET bufnum,recnum
GET bufnum[,recnum]

StatementC
Statement I

bufnum Is file control block buffer number, 1-15; it may be
a numeric constant or numeric expression.

recnum Is the record number to read or write; it may be
a numeric constant or numeric expression.

GRT and PUT are the two type "R" disk file manipulation commands,
and type "X" for Compiler BASIC. PUT writes the contents of the record
buffer to the specified record in the specified currently open file. GET is
used to retrieve information from a random file. The information that is
retrieved is stored in the buff er that was used to open the file. Note that the
"recnum" operand is mandatory in compiler BASIC; optional in
Interpreter BASIC.

Under Interpreter BASIC, if the record number, recnum, is not specified,
the computer will increment the current record number by one, after which
it will perform a "GEr' of the current record number. If no current record
number has been established, the computer will perform a "GEr' of
record number one, and the current record number will be set equal to one.

Suppose you have opened a file and fielded the corresponding buffer. The
buffer number used is 3. After executing one of the following statements:

GET 3,17
N%=2:N1%=16:GET N%+1,Nl%+1

record 17 of the file will be contained in the designated buffer, and
information dealing with this record may now be accessed by referencing
the variables used in the "FIE.LO" statemenL

129

BASIC Reference Manual

GOSUB GOSUB

This command allows your program to invoke unconditional program
subroutine calls.

Compiler BASIC and Interpreter BASIC

GOSUBaddr
RETURN

Statement
Statement

addr Is a line number (or a Compiler BASIC label).

GOSUB is the standard BASIC command to call a subroutine. Nested
GOSUBs are limited only by available free stack memory. ..RETURN"
returns from a subroutine to the next instruction following the GOSUB
invocation. Note the use of the Compiler BASIC "POP" command
documented elsewhere. The following table describes the possible errors
which could result from invalid use of these instructions:

Possible Errors
"UND£flN£0 LIN["
.. UND£FIN£D l.Alll"

Reason
Reference to undefined line #
Reference to undefined label

Line labels are a much better mnemonic device than line numbers, as well
a., being descriptive, as in the following example:

10 DIM A(l0),B(l0):' Note that ALL arrays must
be dimensioned in compiler BASIC
20 FOR X=0 TO 10: A(X)=RND(X): B(X)=RND(0):

?A(X),B(X) :NEXT
30 GOSUB"SORTA"
40 GOSUB"PRINTA":' Could be GOSUB 140
50 GOSUB"SORTB"
60 GOSUB"PRINTB"
70 END
80
100 "SORTA":' Alternatively: JNAME"SORTA"

130

BASIC Statements and Functions

110 SCLEAR:KEY A(0) :TAG B(0) :SORT 11:RETURN
120 "SORTB"
130 SCLEAR:KEY 8(0) :TAG A(0) :SORT 11:RETURN
140 "PRINTA"
150 FOR X=0 TO 11 : PRINT A(X),B(X) :NEXT:RETURN
160 "PRINTS"
170 FOR X=0 TO 11: PRINT B(X),A(X) :NEXT:RETURN

This program loads arrays AO and BO with random numbers and then
proceeds to sort them individually, first on AO with BO elements .. tagging
along", then on BO with AO as a TAG.

Note that in the example, lines 150 and 170 illustrate the runtime error
handling of "subscript out of bounds". To correctly run the program,
change the '11' to '1 O' in both of those lines.

131

BASIC Reference Manual

GOTO GOTO

This statement allows your program to invoke unconditional program
branching.

Compiler BASIC and Interpreter BASIC

GOTOaddr Statement

addr Is a line number (or a Compiler BASIC label).

GOTO is the standard BASIC way to transfer program execution to just
about any desired point in the program. A conventional line number may
be used in Interpreter BASIC; a line number or a label can be specified in
Compiler BASIC

The following table describes the possible errors which could result from
invalid use of this branch instruction:

Pos.,ible Errors
"UN0£FIN£0 LIN["

"UND£FIN£0 lABfl"

Example Program:

Reason
Reference to undefined line #
Reference to undefined label

10 PRINT"This is the beginning "
20 FOR x~o TO 10:PRINT X,:NEXT:PRINT
30 PRINT"AGAIN??"
40 GOTO 10

In this program. the .. GOTO 10" in line 40 causes the example program
to run on the computer indefinitely until someone comes along and
BREAK.s the program or the computer eventually crashes.

132

BASIC Statements and Functions

&H &H

This function indicates that the argument is a hexadecimal number rather
than a decimal fonnat number.

Compiler BASIC and Interpreter BASIC

&Hd0 ••. d4 Hexadecimal number Function

To represent a number in its hexadecimal fonnat, you may use the
characters "&H" as a prefix to the number. This may be useful when you
wish to define an address for a user machine language subroutine (see
"DEFUSR").

One to four hexadecimal digits may follow the •• &H" prefix. Hexadecimal
digits consist of the numeric digits "0-9''. as well as the alphabetic letters
"A-F" which indicate the numeric values "10-15". The number
represented using the "&H" prefix will always be taken as two's
complement notation. For example, the assignments:

A= 8 AND &HlOO

and

A= BAND256

are equivalent. Other examples are:

A=&Hll
A=&HA9
A=&HFOOO

A would be set equal to the decimal number 17.
A would be set equal to the decimal number 169.
A would be set equal to the decimal number -4096.

133

BASIC Reference Manual

HEX$ HEX$

This function converts numeric expressions to strings of hexadecimal
digits.

Compiler BASIC and DOS 6 Interpreter BASIC

HEX$(exp16) Function

exp16 Is in the range <-32768 to 32767>

HEX$ returns a four-character ASCII hexadecimal representation of an
integer. For example, HEX$(-2) is equal to "FFFE".

134

BASIC Statements and Functions

IF THEN ELSE IF THEN ELSE

These statements implement the typical "IF ... THEN .• .ELSE" conditional
structure.

Compiler BASIC and Interpreter BASIC

IF cond THEN acflon [ELSE default action] Statement

IF cond Statement C
program code

[ELSE Statement C
program code)
ENDIF Statement C

"IF .•• THEN ... ELSE" comprise the critical conditional execution
statements. The cond is evaluated; if it is TRUE, then the action
statements are executed; if the cond is FALSE, then the default action
statements following the "ELSE" are executed, if any. If no "ELSE"
statement is provided, execution continues with the next program line.

Compiler BASIC supports two forms of the "IF ... THEN ••• ELSE"
construct: the standard single-line "IF •.• THEN ••. ELSE" construct; and
enhanced, multi-line "IF ••. THEN ... ELSE". Here are two examples that
are logically equivalent:

10 IF X<O THEN A=A-X:K-1
:IF A>16 THEN A-0 ELSE ELSE A•A+X

and

10 IF X<O
20 A=A-X:K•l
30 IF A>l6
40 A•O
50 ENDIF
60 ELSE
70 A-A+X

135

BASIC Reference Manual

,80 ENDIF
90 PRINT"END OF CONDITIONAL CONSTRUCT"
100 END

The second example clearly shows the logical flow of the program, as
opposed to the compact but visually linear first example. In the second
example: If X<O, line 20 (A=A-X) is done. Line 40 (A=0) is executed if
the further conditional (A>16) at line 30 is met. Lines 60-80 are skipped
are part of the ELSE code. If NOT(X<O), program flow goes to line 70
(A=A+X) in the ELSE code section.

136

BASIC Statements and Functions

INC INC

INC is a Compiler BASIC statement used to increment an integer
variable.

Compiler BASIC

INC intvar Statement

lntvar Is either an integer variable or an integer
array element.

INC and DEC provide a very quick way to increment or decrement a
specified integer variable, respectively.

Examples:

INC A%: 'A%= A%+ 1

DEC B%(10): 'B%(10) = B%(10) - 1

137

BASIC Reference Manual

INKEY$ INKEY$

This function will strobe the keyboard and return the key depressed.

Compiler BASIC and Interpreter BASIC

INKEY$ There is no operandi Function

1NKEY$ returns a null string (i.e. zero length) if no key is pressed or the
key code if a key is pressed.

Example Program:

10 PRINT"Press any KEY to continue"
20 A$=INKEY$:IF A$="" THEN 20
30 IF A$... "X" THEN PRINT"Exiting program":END
40 PRINT ASC(A$);
50 GOTO 20

This program will display the ASCII value of the key pressed until you
either <BREAK> the program or press a capital "X ...

138

BASIC Statements and Functions

INP INP

This function obtains the value of the specified CPU port.

Compiler BASIC and Interpreter BASIC

INP(portnum) Function

portnum Specifies the CPU port in the range <0-255>.

INP performs a machine instruction to read the contents of the specified
1/0 port. It is the logical corollary to the "OlIT" command, described
elsewhere, which sends a value to a specified CPU 1/0 port.

Programmer's Note:

Under Interpreter BASIC, the value of portnum can actually range from 0
through 32767; the actual value used for the port determination will be
"portnum modulo 256". Thus, a portnum of 256 designates port O; a
portmun of 257 designates port 1. However, the high-order value will be
presented to the high-order address lines of the CPU address bus. This may
be useful in addressing internal and external ports of the 64180/ZlS0
processor which requires a high-order zero value to reference internal
ports and a high-order non-zero value to reference external ports.

139

BASIC Reference Manual

INPUT INPUT

INPUT is used to accept keyboard input for variable value(s).

Compiler BASIC and Interpreter BASIC

INPUT [@pos,]["strlng";J varl [,var2 ...]
INPUT rstring";I,] varl (,var2 ...]

Statement C, 5
Statement 6

@pos

string

var

When specified, positions the video cursor to pos.

When specified, the character string is displayed
prior to the input.

Is any appropriate variable.

INPUT displays a question mark, then reads data from the keyboard. An
optional "prompt" string may be printed prior to the "7". Leading blanks
are skippechvhile reading. Strings (string variable specified) are read until
a comma or an <ENTER> "CHR$(13)" is reached. Numbers (numeric
variable specified) are read until a space, a comma, or an <ENTER> is
encountered.

DOS S Interpreter BASIC and Compiler BASIC allow you to establish the
video screen cursor location prior to the input or message string display.
The "@pos" is identical in concept to the "PRINT @pos". See additional
information under "INPtrr@".

Under DOS 6 Interpreter BASIC, the optional prompt string may be
terminated with either a semi-colon or a comma. If a comma is used, then
the automatic question mark display is suppressed.

1.0 INPUT "Enter your weight in pounds"; p
20 PRINT "Your weight in kilograms would be";
p*0.45359237

140

BASIC Statements and Functions

INPUT# INPUT#

The INPUT# statement is used to retrieve infonnation from a sequential
file into variable(s). The syntax used with the "INPUf#" command is:

Complier BASIC and Interpreter BASIC

INPUT#bufnum, varl [,var2 .•.] Statement

bufnum Is a file control block buffer number, <1-15>, used
to open the file.

var Is any appropriate variable used to store the
information retrieved.

INPUT# reads data from an "I" type file. Leading blanks are skipped
while sequentially reading. Strings (string variable specified) are reifd. until
a comma, an <ENTER> "CHR$(13)", or the end of the file is reached.
Numbers (numeric variable specified) are read until a space, a comma, an
<ENTER>, or the end of file is encountered.

Sequential files are created by specifying an OPEN"O" or OPEN"E"
command, followed by one or more PRINT# commands. After a sequential
file has been created, the information in it may be accessed by using the
OPEN"I" and INPUT# commands. The "INPUT#" command can be
thought of as performing a function similar to the "INPUf" command, the
exception being that the information is not entered from the keyboard.
Rather, it is retrieved from the disk. Like the .. INPUT'' command,
"INPUf#" can only be executed from within a program, and cannot be
executed from the BASIC Ready prompt

The variable types used in an "INPUf#" statement must be the same type
of variable used when the information was written to the file via the
"PRINT#" command. At least one variable must be specified with the
"INPUf #" command. If multiple variables are specified with the
"INPtJf #" command, they must be separated by commas.

After execution of an "INPUT#" command, the variable(s) specified will
be assigned values corresponding to the data retrieved from the disk. If

141

BASIC Reference Manual

you tty to execute an "INPUT#" command after all of the data has been
reb'ieved from the file, an Input post end error will be generated.

Suppose a file called MYFILE/SEQ was created using the OPEN"O" and
PRINTI commands, and this ftle contains the following pieces of data:

JONES
THOMAS
12
MALE

The following commands may be used to access this infonnation:

OPEN"I",1,"MYFILE/SEQ"
INPUTfl,LN$,FN$,AG%
INPUTl1,SE$

After the execution of the first two commands, the file MYFILFJSEQ
would have been opened for sequential input, the variable "LN$" would
have been assigned the value "JONES", the variable "FN$" would have
been assigned the value "TIIOMAS", and the variable "AG%" would have
been assigned the value "12". Note that the last piece of data in the me
("MALE") would not have been accessed by either of the first two
commands. However, after the third command "INPUT# 1,SE$.. has been
executed, the variable "SE$" would be assigned a value of "MALE".

"INPUT#" deals with data in a disk file in a special way. For more
information on creating sequential files that are accessed by the "INPUT#"
command, refer to "OPEN" ("0", "E" and "I") and "PRINT#".

142

BASIC Statements and Functions

INPUT$ INPUT$

This DOS 6 interpreter BASIC statement is used to input a string of
characters from either the keyboard or a disk ft.le. It's syntax is:

DOS 6 Interpreter BASIC

INPUT$(1ntvor[,bufnum]) Statement

lntvor Is the quantity of characters to accept; intvar must
be in the range <1-255>.

bufnum Is an optional file buffer number; if bufnum is
omitted, the input is fetched from the keyboard.

INPUT$ accepts a designated quantity of characters from eithel: the
keyboard or a previously opened disk file. The characters are read into a
string variable. The input stops as soon as the designated quantity of
characters is fetched. During the input, the characters fetched are not
displayed on the video screen.

143

BASIC Reference Manual

INPUT@ INPUT@

This DOS 5 BASIC statement provides a facility for controlling keyboard
input to a string variable with prompting and screen field highlighting. The
expanded fonn of INPUT@ is:

DOS 5 Interpreter BASIC

INPUT@pos(, •message·],fw, ·$1tC-](f]";var$ Statement

pos

var

fw

$

' •
f

var$

The screen position for the message or field.

Variables used to store the data retrieved.

The maximum input field width < 1-240>.

Acceptance of characters <32d-127d>.
Acceptance of characters <0-9. period, minus. plus> .
Specifies immediate <ENTER> on maximum input.
Designates a field fall character ("_'1.

The string variable to receive the inpuL

The expanded form of INPUT@ allows you to specify an input field
width. an input field fill character. whether the input should be
alphanumeric or just numeric, and whether the input should automatically
terminate when the "field width" number of characters have been entered
rather than requiring a hard <ENTER>.

The single input variable will always be a string variable and the input. re
gardless of designated type. will always be a siring of characters. Note that
since the .. immediate <ENTER> on maximum input .. character is examined
before the programmed fill character. you cannot designate an asterisk as
the fill character unless you specify the foreed immediate <ENTER>. Thus,
.. , .. " will be interpreted as accepting numeric only. immediate <ENTER>
on full field, and use an asterisk as the field fill character. On the other
hand ... ,." will default the field mt character to an underline.

144

BASIC Statements and Functions

INSTR INSTR

This function will search a string for a designated substring.

Compiler BASIC and Interpreter BASIC

INSTR([exp,J exp 1 $,exp2$) Function

exp1$

exp2$

exp

Is the string to search.

Is the string to search for within the target string.

Is an optional search start point.

The INSTR command allows you to search for a specified sub-string
within a given target string. "INSTR" returns the position number'in "the
target string of where the sub-string was found. If the substring was not
found, "INSTR" returns a numeric value of "O".

The starting position may be either a numeric constant or a numeric
expression, and must represent an integer value in the range of 1 to 255,
inclusive. The target string and sub-string may be either string constants or
string expressions.

"INSTR" wilt begin the search of the target string for the sub-string from
the starting position specified (if no starting position is specified, ••INSTR"
will begin the search from the first character of the target string), and will
return a numeric value corresponding to the position in the target string of
where the first occurrence of the sub-string is found. If the sub-string is not
found in the target string, "INSTR" will return a 0. If the sub-string to be
searched for is a null string, "INSTR" will return the starting position of
the search, as the null string is a sub-set of any string.

Other occurrences may cause .. INSTR" to return a zero. They are:

• If the target string is a null string.

BASIC Reference Manual

• H the starting position is a number greater than the length of the
target string.

Suppose you have the following lines in a program:

A$="ROY IS A BOY":
B$="0Y":C$="ROY":D$="oy":E$="ROYIS"

A%=-INSTR (A$, C$)
B%=INSTR(2,A$,B$)
C%=INSTR(3,A$,B$)
D%=INSTR(2,A$,C$)
E%=INSTR(A$,D$)
F%=-INSTR (A$, E$)

After executing the above lines, the following variables will have been
assigned these values:

A o/o• 1 Bo/o=2 Co/o• 11 Do/o=O Eo/o=O Fo/o=O

Note that the value of E% will be 0. This is because the sub-string ("oy")
is in lower case, and there are no lower case letters in the target string.
Also note that the value of F% will be 0. This is because the string
"ROYIS" does not appear in the target string (there is a space between the
words "ROY" and "IS" in the target string).

Example Programs:

10 A$="THIS IS A TEST"
20 B$="IS"
30 I=l
40 F=INSTR(I,A$,B$)
50 IF F=O THEN PRINT"End of search.":END
60 PRINT B$;" FOUND IN ";A$;" AT POSITION ";F
70 I=F+l:GOTO 40:' Continue search

CLS
20 A$=WINKEY$
PRINT "a$=";ASC(A$)
IF INSTR(CHR$(8)+CHR$(9)+CHR$(13)+CHR$(10),A$)
THEN PRINT ASC(A$)
FOR I=l TO 1000:NEXT I:GOTO 20

146

BASIC Statements and Functions

INT INT

This is the "greatest integer" function.

Compiler BASIC and Interpreter BASIC

INT(exp) Function

exp Is a nwneric expression.

INT works with any precision expression, returning the same precision. It
returns the greatest integer less than exp. For the conr used, some
examples:

INT(3.4) • 3

INT(.5) = 0

INT(-.5) = -1

INT(-1.4) = -2

147

BASIC Reference Manual

INVERT INVERT

This Compiler BASIC statement is used to invert all graphics on the video
screen.

Compiler BASIC

INVERT Statement

This command inverts all graphics on the screen. ..SET" points are
"RESET' and vice versa Text (characters not within range 128 =< x =<
191) is ignored.

148

BASIC Statements and Functions

JNAME JNAME

This Compiler BASIC statement is used to establish a line label.

Compiler BASIC

JNAME"label"
"label" [EQU value]

Statement
Statement

label

value

Is a (unique) string of characters representing a
memory location.

Is an optional value assigned to the label.

Labels are used to establish branch points for use with "GOT0s••,
"GOSUBs .. , or any BASIC statement.

Line labels must not have imbedded spaces. The labels must be entered as
a contiguous string of non-space characters. For instance, "PRINT A",
"SORTA", "PRINTB", and "SORTB" are all examples of valid labels.

All BASIC (HIGH-MODE) referenced labels must be located within the
HIGH-MODE portion of your program. A label defined in the Z80-MODE
of your program can be referenced by the assembler portion only. See the
use of "ENLOOP" and "ENDENC" on page 128.

The "EQU .. operator of "label" allows you to define values for labels to be
typically used in conditional compilation. For example, the following
short program illustrates using a label value along with Compiler BASIC's
""'IF' compiler directive to select alternative program statements for
compilation:

"DOSS" EQU 0:"DOS6" EQU 1
*IF DOSS
PRINT"DOS 5"
*ENDIF
*IF DOS6

149

BASIC Reference Manual

PRINT "DOS 6"
*ENDIF

H two or more labels are defined with the JNAME"lobel" or "label"
statement, a "Multiply defined symbor error will be issued.

Example Program:

10 DIM A(lO),B(lO) :' Note that ALL arrays must
be dimensioned in compiler BASIC
20 FOR X=O TO 10:A(X)=RND(X): B(X)=RND(O):

?A(X),B(X) :NEXT
30 GOSUB"SORTA"
40 GOSUB"PRINTA":' Could be GOSUB 140
50 GOSUB"SORT B"
60 GOSUB"PRINT B"
70 END
80
100 "SORTA":' Alternatively: JNAME"SORTA"
110 SCLEAR:KEY A(O) :TAG B(O) :SORT 11:RETURN
120 "SORTB"
130 SCLEAR:KEY B(O) :TAG A(O) :SORT 11:RETURN
140 "PRINTA"
150 FOR X=O TO 11: PRINT A(X),B(X) :NEXT:RETURN
160 "PRINT B"
170 FOR X=O TO 11: PRINT B(X),A(X):NEXT:RETURN

This program loads arrays AO and BO with random numbers and then
proceeds to sort them individually, first on AO with BO elements "tagging
along", then on BO with AO as a TAG.

Note that in the example, lines 150 and 170 illustrate the runtime error
handling of "subscript out of bounds". To correctly run the program,
change the "l r' to "10" in both of those lines.

BASIC Statements and Functions

LEFT LEFT

This Compiler BASIC statement is used to scroll the video screen left one
column.

Compiler BASIC

LEFT StatementC

This compiler BASIC statement scrolls the entire screen left by one
character. The entire last screen column is cleared, and all of the 0th
column is written over with the 1st column.

151

BASIC Reference Manual

LEFT$ LEFT$

This function exttacts a sub-string of a string.

Compiler BASIC and Interpreter BASIC

LEFT$ (exp$,exp 1) Function

exp$ Is any string expression.

exp 1 Is the number of leftmost characters to use for the
obtained substring.

LEFf$ extracts a sub-string from the left of a string. For example:

LEFT$("FOUR SCORES" ,4) == "FOUR"

LEFT$("NO MUSAK• ,6) == "NO MUS"

Not&Jthat MID$ can easily simulate LEFT$. For example:

LEFT$(exp$,exp)

assuming 1en(exp$) >= exp.

152

is equivalent to M1D$(exp$, 1,exp)

BASIC Statements and Functions

LEN LEN

This function obtains the length of its string argument.

Complier BASIC and Interpreter BASIC

LEN(exp$) Function

exp$ Is any string expression.

LEN returns the length of the specified string expression. Naturally, the
string expression can be a single string variable. For example,

A$= "TEST"
A= LEN(A$)

assigns 4 to "A". And:

A$= "TEST"
A = LEN(A$ + "ING")

assigns 7 to "A". (A quicker way would be: A=LEN(A$)+3.)

153

BASIC Reference Manual

LET LET

LET is used to assign a value to a variable.

Compiler BASIC and Interpreter BASIC

(LET] var • exp Statement

var Is any variable.

exp Is any expression of appropriate type.

Any variable assignment can be done without the LET command. "LET"
is included to preserve compatibility.

Examples:

A• 10:' Assign 10 to variable A

~$ • •HELLO":' Set A$ lo "HELLO•

Note on •'Garbage collection" and string variables: Interpretive BASIC is
notorious for the string ••garbage collection•• lock-up that occurs when free
string space is needed and it is necessary to clean up the garbage left over
from previous string manipulations. Compiler BASIC programs don't
suffer from this malady. There is never .. garbage" lying around in the
string storage area; the only time extensive re-arrangement of strings and
string pointers can occur is during a string assignmenL

154

BASIC Statements and Functions

LINEINPUT LINEINPUT

LINEINPUT is used to accept keyboard input into a string.

Compiler BASIC and Interpreter BASIC

LINEINPUT [@pos]["string";]var$
LINE INPUT ["string";Jvar$

StatementC
Statement I

@pos

string

var$

An optional screen position to initiate the video
cursor prior to inpuL

Is an optional message to be displayed prior to
accepting the input.

Is any appropriate string variable.

Note: the space between .. LINE" and "INPUT'' is optional under
DOS 5 Interpreter BASIC; mandatory under DOS 6.

The LINE INPUT command is very similar to the "INPUT'' command. It
will allow you to enter infonnation from the keyboard to be stored in a
variable. The differences between the "LINEINPUT'' command and the
"INPUT' command are as follows:

• No question mark will appear when the input is taken.

• Only one variable may be assigned a value.

All characters entered before <ENTER> is pressed will be assigned to the
variable specified (i.e. commas and quotes may be input from the
keyboard, and leading spaces are not ignored).

An optional "prompt" string may be printed. The "LINE INPUT''
statement turns on the cursor prior to performing the input and turns off
the cursor upon concluding the input.

The prompting message is optional; if used, it must be included within
quotes, and must be separated from the variable by a semicolon. If the

155

BASIC Reference Manual

prompting message is not used, a semicolon cannot be used. As is the case
with the .. INPlTf'' command, "LINE INPUT" cannot be issued from the
BASIC Reody prompL

Suppose that you wish to input a person's name and title into a program,
and you wish to separate the name from the title by use of a comma. Using
the .. LINE INPUT" command, you may now input the comma from the
keyboard to be taken as part of the input. The fo11owing "LINE INPUT"
command may be used to accomplish this.

100 LINE INPUT"Enter Name, Title";A$

When the computer executes the above command, you wi11 see the prompt
"Enter Name, liUe" appear, and there wi11 be no question mark after the
prompt. The computer wilt now be awaiting your input. If you answer this
prompt by typing in the response .. JOHN JONES, PRESIDENT", "A$"
will be assigned all characters that you have typed in, prior to pressing the
<ENTER> key.

156

BASIC Statements and Functions

LINEINPUT# LINEINPUT#

LINE INPUT# is used to read from a sequential file into a string variable.

Compiler BASIC and Interpreter BASIC

LINEINPUT#bufnum, var$
LINE INPUT#bufnum, var$

StatementC
Statement I

bufnum Is a file control block buffer number, <1-15>, used
when the file was opened.

var$ Is any string variable used to stored the retrieved
information.

Note: the space between "LINE" and "INPlfr' is optional under
DOS 5 Interpreter BASIC; mandatory under DOS 6.

LINE INPUT# reads a string from an "r' type file into a variable. All
characters starting at the current read point up to a <ENTER> "CHR$(13)"
or the end of file are read into the string, up to the limit of 255 characters.
It functions similarly to the "LINE INPUT" command, with the exception
being that the input is taken from the disk, rather than the keyboard.

"LINE INPUT#" differs from "INPUT#" in several ways. As noted in the
PRINT# command, INPUT# will read information in from the disk until it
encounters a comma, a carriage return, the end of file, or the 255th
character when dealing with string infonnation. When using LINE
INPUT#, commas will not be taken as delimiters of the string, and hence
may be included in the input from disk. The "LINE INPUT#" of a variable
will terminate when a carriage return, the end of file, or the 255th
character of a string is encountered. As is the case with "INPUT#", "LINE
INPUT#" cannot be executed from the BASIC Ready prompt.

157

BASIC Reference Manual

Assume the following data is stored in a disk file, and the file has been
opened using buffer number 1.

JOHN JONES , PRESIDENT , ABC CORPORATION<ENTER>

If the command LINE INPUT# 1,A$ is used to input the above infonnation,
.. A$" would be assigned the value:

JOHN JONES , PRESIDENT, ABC CORPORATION

Realize that all of the characters (including the commas) would be read in
and assigned to A$.

If the command INPUTl1,A$ were used instead of 0 LINEINPUT#", the
value of A$ would be "JOHN JONES", as "INPUT#" will read
information until it encounters a comma. For more information on how
data is stored on the disk in a sequential file, see "PRINT#".

158

BASIC Statements and Functions

LINESPAGE LINESPAGE

This Compiler BASIC statement is used to set the number of printed lines
per page.

Compiler BAStC

LINESPAGE • exp Statement

exp Is a numeric expression which evaluates to
the range <2-255>.

This statement sets the number of lines printed on a page until automatic
Top Of Form (fOF) occurs. Its use is similar to using the OOS FORMS
filter with "Lines=exp,Ffhard"; however, Compiler BASIC's paging
control is strictly internal to BASIC.

For additional printer paging statements, see "LMARGIN", "PAGEL.EN",
"PZONE", and "RMARGIN".

159

BASIC Reference Manual

LMARGIN LMARGIN

This Compiler BASIC statement is used to set the printer's left hand
margin.

Compiler BASIC

LMARGIN • exp Statement

exp Is a numeric expression which evaluates to
the range <2-255>.

This statement sets the number of spaces automatically printed when a
carriage return (ASCII 13) is sent to your printer. The default is O spaces.
Its use is similar to using the DOS FORMS filter with "Margin=exp";
however, Compiler BASIC's paging control is stricdy internal to BASIC.

For additional printer paging statements, see LINESPAGE, PAGELEN,
P'ZONE, and RMARGIN.

160

BASIC Statements and Functions

LOAD LOAD

This statement will load a "CMD-type" program from disk into memory.

Compiler BASIC

LOAD"filespec$"

filespec$ Designates the file to load.

Statement

LOAD loads a machine language program from disk into memory without
executing it. It is identical to DOS 5 Interpreter BASIC's CMD"L"
command.

The Interpreter BASIC "LOAD" statement, which loads a BASIC program
into memory, is discussed in the section on Editing Interpreter BASIC.

161

BASIC Reference Manual

LOC LOC

The LOC command is used primarily with random files, and will return a
value corresponding to the current record number of the given file. The
syntax for the "LOC" command is:

Compiler BASIC and Interpreter BASIC

LOC(bufnum) Function

bufnum Represents the buffer number used to open the file
in question. Bufnum may be either a numeric
constant or a numeric expression, and must
correspond to an open file.

When a file is in an open state, the computer maintains some control
information dealing with that file. One piece of information that is
available to the user is the record number currently being dealt with. The
LOC command will return the current record number that the computer
has accessed. If no record in an open file has been accessed, "LOC" will
return the value 0.

Suppose you have opened a file using buffer number 2, and have fielded
the buffer accordingly. If the following commands are executed:

GET 2,17
A%=LOC(2)

the variable "A%" will be assigned the value 17.

162

BASIC Statements and Functions

LOF LOF

The LOF command is used primarily with random files, type "R", and
will return a value corresponding to the last record number of the given
file. The syntax for the "LOF' command is:

Compiler BASIC and Interpreter BASIC

LOF(bufnum) Function

bufnum Represents the buffer number used to open the me
in question. Bufnum may be either a numeric
constant or a numeric expression.

The LOF command provides a means of detennining, the nqmber of
records that have been written to a random file. Note that [fa file 'has been
pre-created using the DOS "CREA TE" command, "LOf" will return a
number corresponding to the highest record number actually written to,
not the number or records that have been pre-created.

Suppose you have a file named MYFILF/DAT, and the highest record
number written to is record number 43. If the file has been opened using
buffer number 3, and has been fielded accordingly, the following
command will result in the variable A% being set equal to 43.

A%=LOF(3)

Under Compiler BASIC, LOFO restricts its use on all file types except
"R". The "X" type file does not maintain an end-of-file pointer which is
valid for the last record.

ALLOCATE 1:0PEN "R",l,"testfile/dat:4",20
FIELD 1, 16 AS A$, 2 AS Al$, 2 AS Al$
LSET A$="This is record: "
FOR I= 1 TO 45:Al$ • MKI$(I) :PUT l,I:NEXT
CLOSE:SYSTEM"dir test:4"
OPEN "R",l,"testfile/dat:4",20
PRINT LOF(l) :CLOSE:END

163

BASIC Reference Manual

LOG LOG

This function obtains the natural logarithm of its argument

Compiler BASIC and Interpreter BASIC

LOG(exp) Function

exp Is a numeric expression.

LOG returns the natural logarithm of an expression. Theoretically
(ignoring inevitable round-off error), LOG(EXP(exp)) = exp. Interpreter
BASIC provides a single precision result; compiler BASIC "LOG" returns,
with full precision, a value of the same type given (ex.: LOG(l.7#*X#)
returns the log of this expression accurate to 16 decimal digits due to the
double precision.)

LOG(A) will return an Ulegol function coll error if A is zero or negative.

164

BASIC Statements and Functions

LPOS LPOS

This Interpreter BASIC function obtains the relative position of the line
printer's print head relative to the line printer's program buffer.

Interpreter BASIC

LPOS (dummy) Function

dummy Is a dummy argument required for functions.

This function allows you to obtain the logical position of the printer's print
head; i.e. where the next character LPRINT'd would be placed. For
example, after the following program is RUN,

10 LPRINT "This is a message";
20 PRINT LPOS (0)
30 LPRINT TAB(S);
40 PRINT LPOS(0)

the video screen would display,

IF" I

165

BASIC Reference Manual

LPRINT LPRINT

This statement is used to print data to the printer.

Compiler BASIC and Interpreter BASIC

LPRINT [item] [,l;l[TAB(exp)J ...]
LPRINT USING format; Dem

Statement
Statement

Hem Is a .. stringliteral" or a numeric I string expression.

,; Are delimiters.

All LPRINT statements are equivalent to .. PRINT" statements, but are
directed to the line printer rather than the video screen. A comma
delimiter or equivalently TAB(255) tabs the cursor to the next printer
zone. A semi-colon delimiter retains the print position immediately
following the output of item. By not specifying a terminator, the next
.. IJPRINT" will occur on the next print line. You can tab to a particular
column by specifying a "TAB(exp)" with exp equal to the column
position.

Compiler BASIC "USING" is a string expression, and can thusly be
manipulated just like any string. Compiled and interpreted BASIC
"PRINT USING" statements usually produce the same output.

Compiler BASIC also allows you to alter the default screen or printer TAB
positions with the .. SZONE" and .. P'ZONE" commands respectively
documented elsewhere in this manual.

166

BASIC Statements and Functions

LSET LSET

LSET is used to set infonnation into FIELDed string variables for use
with random access files.

Compiler BASIC and Interpreter BASIC

LSET var$ = exp$ Statement

var$

exp$

Is a FIELDed string variable used in the FIELD
statement that points to the location in the buffer
where the information is to be added.

Is the information that you wish to place in the
buffer, and must be a string constant or a string
expression.

The LSET command will allow you to place information in the buffer
associated with a random file, prior to writing the information in the buff er
out to disk. LSET and RSET are really just versions of "MID$ =". Their
main intended purpose is to set information into FIELDed string variables.
FIELDed strings must point to a static memory location (in a file's record
buffer). For "LSET', var$ is overlaid starting at position O with e.xp$,
filling any remaining portion of var$ with blanks (ASCII 32). For
"RSET", var$ is overlaid with e.xp$, measuring from the end of var$,
filling any remaining portion of var$ with blanks (i.e. the information is
right justified).

When dealing with random files, the "FIELD" statement is used to set up
and partition the buff er associated with the file. String variables are used
in the "FIELD" statement to designate various slots for information
storage and retrieval in the buffer. The "LSET' command allows you to
place information in these slots in lhe buffer, prior to writing the
information out to disk.

The "LSET" command will left-justify the information in the buffer. That
is to say, if the length of tt,e string to be placed in the buff er is less than
the length allocated for the particular slot, trailing spaces will be inserted

167

BASIC Reference Manual

at the end of the string in the buffer. This will make the string in the buffer
the same length as specified in the "FIELD" statement.

H the length of the string to be "LSET' into the buffer is greater than the
fielded length, the left most part of the string will be placed in the buff er,
and any characters to the right of the total allocated space will be
truncated. See "RSET'' to right-justify a string into the buffer.

The commands "MK.I$", "MKS$", and "MKD$" are also used in conjunc
tion with the "LSBT' statement. Because the buffer is fielded in terms of
string variables, only string values may be LSET into the buffer. The
"MK.I$", "MKS$", and "MKD$" commands are used to change numeric
data into compressed string representations of numbers, and will create
strings of two bytes, four bytes, and eight bytes respectively. When per
forming an ••LSET' using the "MK.I$", "MKS$" or "MKD$" commands,
the length of the fielded variable to be "LSET" must be at least two bytes,
four bytes, or eight bytes, respectively. For more information on com
mands that are used with "LSET', refer to the commands "MK.I$",
"MKD$", "MKS$", and "FIELD", and the example below.

Suppose you have a file called MYFILF/DAT, and have opened the file to
have record lengths of 45 bytes. In addition, assume that the buff er
corresponding to the file (buffer number 1) has been fielded with the
following statement, and the variables listed below have been assigned the
given values:

FIELD 1, 31 AS NA$, 2 AS A2$, 4 AS A4$, 8 AS A8$
NM$•"JOHN JONES, PRESIDENT":
A2\•92:A4!=23.79:A8f=123498.63

The LSET statements you may use to place these values into the buffer
may look like this:

LSET NA$=NM$
LSET A2$=MKI$(A2\)
LSET A4$=MKS$(A4!)
LSET A8$=MKD$(A8f)

The values of the variables A2%, A41, and AS# will be stored in the slots
in the buffer pointed to by the variables A2$, A4$, and AS$, respectively.
They will be stored as compressed string representations of the values the
variables have been assigned.

168

BASIC Slalements and Functions

The value of NM$ will be stored in the slot in the buffer pointed to by the
variable NA$. Realize that since the length of NM$ is 21 characters, the
last 10 characters of the slot in the buffer pointed lo by NA$ will be spaces
(CHR$(32JJ. Ir the length of NM$ would have been longer than 31
characters, the left-most 31 characters would have been placed in the
buffer, and the remaining characters would have been truncated (in
essence, ignored).

The "LSET" command will typically be used prior to performing a data
write to a random file. For more information on performing a data write to
a random file, see "OPEN", "FIELD" and "PUT".

A standard string assignment, such as A$="MONDA Y" places A$'s data
in the string storage area, which is constantly changing. "LSET'' and
"RSET" (and MID$) directly alter existing a string variable's contents
without changing the string's position in memory. The main difference
between "MID$" and "LSET" or "RSET" is tl1at the latter commands fill
the remaining characters in the affected string with blanks, or CHR$(32)'s.

Note that compiled "LSET" and "RSET'', as with interpretive Disk BASIC
"LSET" or "RSET" commands, work on any string variable, not just
FIELDed string variables.

Examples (in all examples A$ is 10 chars long):

LSET A$="HELLO":'
LSET A$="12345678912":'
RSET A$="HELLO":'
LSET A$=MKD$(1.2345#):'

Now A$•"HELLO •
Now A$=-"1234567891"
A$•" HELLO"
Now first 8 bytes of A$
contain the floating point
double precision number
1.2345#

169

BASIC Reference Manual

MEM MEM

This function obtains the amount of free stack space or free memory.

Compiler BASIC and Interpreter BASIC

MEM No operand is required! Function

MEM simply returns the amount of free memory left for array
dimensions, ALLOCATE, etc. -- or what amounts to the same thing, the
free stack space left. Under DOS 6 Interpreter BASIC, the value returned
is the amount of free memory.

170

BASIC Statements and Functions

MERGE MERGE

The MERGE command will allow you to merge a program file stored on
disk (in ASCII) with a program resident in memory, with the resultant
program being stored in memory. The syntax for the "MERGE" command
is:

Interpreter BASIC

MERGE"filespec· Statement

filespec Is the program file, saved in ASCII, which is to be
merged with the current program in memory.
Filespec may be represented as a string constant or a
string expression. If represented as a string constant,
filespec must be contained within quotes.

The MERGE command will read in (line by line) the program from disk,
and merge these lines in with the existing program. Any line number in the
program to be merged that does not exist in the program in memory will
be added to the program in memory. Any line number in the program to be
merged that does exist in the program in memory will overwrite the line in
memory.

The "MERGE" command provides for an easy way to merge subroutines
which are common to several different programs into these programs
without always having to type in the subroutine. The following example
will illustrate how the "MERGE" command functions.

Suppose you have a program which is resident in memory, and this
program consists or the following statements:

10 FOR L=l TO 100
20 PRINT L
30 NEXT L

Assume also that you have a program named MYPROG/ASC stored in
ASCII on disk, and this program consists of the following statements:

171

BASIC Reference Manual

5 DEFINT A-Z
10 FOR L=l TO 500
25 'THIS LINE HAS BEEN MERGED IN
40 GOTO 10

If you wish to merge the program MYPROG/ASC with the program
currently in memory, you may do so by issuing the following command:

MERGE"MYPROG/ Ase·

By giving the above command, the program resident in memory will be
changed to the following:

5 DEFINT A-Z
10 FOR L=l TO 500.
20 PRINT L
25 'THIS LINE HAS BEEN MERGED IN
30 NEXT L
40 GOTO 10

Before merging in a program, you should make sure that there is enough
free memory for the program to be merged in. Also, note that the
"MERGE" command is usually issued from the BASIC Ready prompt.
However, if incorporated within a program, the "MERGE" will be done,
but execution of the program will cease.

172

BASIC Statements and Functions

MID$()= MID$()=

The MID$()::: statement is used to overlay a string or portion of a stting
with another string.

Compiler BASIC and Interpreter BASIC

MID$(vor$,expl[,exp2]) = exp$

var$ Is string to be modified.

Statement

exp 1 Is the starting position of var$ to be overlaid by exp$.

exp2 Designates how many characters of exp$ will overlay the
string, var$.

exp$ Is the overlaying string you wish to replace the specified
portion of the current string with.

MID$ is the only reserved word used as both a function and a command.
Don't confuse the "MID$" function with "MID$" statement, although they
perform similar operations. "MID$"operates directly on string variables
and allows you to perform a character for character replacement of any
characters within a string. "MID$" never changes the length of the string
variable.

The "MID$=" command will perform a character for character
replacement on a given string with the replacement string. It may not be
used to lengthen or shorten an existing string. If the optional length
parameter, exp2, is not specified, the number of characters involved in the
replacement will be determined by the length of the replacement string. If
the length parameter differs from the length of the replacement string, one
of several things may happen.

• If the length parameter is less than the length of the replacement
string, the length parameter will take precedence, and only the
left-most number of characters as specified in the length
parameter will be changed.

173

BASIC Reference Manual

• H the length parameter is greater than the length of the
replacement string, the replacement string will talce precedence,
and only those characters specified in the replacement string will
be changed.

If the parameters specified in the "MID$=" command would cause the
original string to become larger, only those characters up to the end of the
original string would be changed, and the length of the string would
remain unchanged. In essence, the extra characters at the end of the
replacement string would be ignored.

Examples:

A$=•ABCDE": MID$(A$, l)="xyz": 'Now A$ = "xyzDE"

A$="ABCDE": MID$(A$,2,2)="xyz": 'Now A$= "AxyDE"

A$="ABCDE": MID$(A$, 1,4)="xyz·: 'Now A$ = "xyzDE"

A$="ABCDE": MID$(A$,1)="1234567": 'A$ now= "12345"

Example 1 is straightforward. 1n example 2, the optional length expression
of two limits the number of characters overlaid from the expression "xyz".
In example 3, although the maximum length was specified as 4, the length
of "xyz" is only 3. In example 4, A$ is too short to contain the entire string
expression.

For still more examples, suppose you have a string variable A$ set equal
to the value "THIS IS IT". The following "MIDS=" commands would
have these affects on A$.

MID${A$,3,2)=" AT"
M1D$(A$,6,2)="WAS"
MID$(A$,3,8)=" A TS IT"
MID$(A$,9,3)=" ALL"

t74

A$ would change to "THA T IS tr•
A$ would change to "THIS WA IT"
A$ would change to "THATS ITT"
A$ would change to "THIS IS AL"

BASIC Statements and Functions

MID$ MID$

This function extracts sub-strings of a string.

Complier BASIC and Interpreter BASIC

MID$(exp$,exp1 [,exp2J) Function

exp$ ls any string expression.

exp 1 Is the starting position.

exp2 Is the optional substring length. If exp2 is omitted,
the rest of exp$ after expl is taken.

Virtually all BASIC's have a string function performing equivalently to
the "MID$" function. MID$ can pull any desired substring from a given
string. For example:

MID$("ABCDEF•,2,3) 11 "BCD"

M1D$("BYEBYE" ,4,2) 11 ·ev·

MID$("HOUSE",2) 11 "OUSE"

Note that "MID$" can easily simulate both "LEFT$" and "RIGIIT$". For
example:

LEFT$(exp$,exp)
is equivalent to MID$(exp$, 1,exp)

and,

RIGHT$(exp$,exp)
is equivalent to MID$(exp$,len(exp$)-exp+ 1)

assuming len(exp$) >= exp.

175

BASIC Reference Manual

MKD$ MKD$

The MKD$ command (MaKe Double precision string) will change a nu
meric value into an eight-byte string which is a compressed representation
of the value. This command is used primarily with the "LSET" and
"RSET" commands to place numeric data into the buffer associated with
an open random file. The syntax for the .. MKD$" command is:

Compiler BASIC and Interpreter BASIC

MKD$(exp) Function

exp Is a numeric expression of the desired type

MKD$ maps a double precision number to an eight-byte string. The
primary purpose of .. MKD$" is to store double precision numbers in
random access disk files, since .. FIELD" statements accept strings only.
Similarly, .. MKI$" maps an integer to a two-byte string for storing integers
and "MKS$" maps single precision numbers to four-byte string for storing
single prec;jsion Jxpressions. exp may be either a numeric constant or a
numeric expression and can represent any value which may be assigned to
a double precision variable. Up to 16 significant digits will be maintained.
To convert an eight-byte compressed string representation of a number
back to a numeric value, use the .. CVD" command.

Since only strings may be stored in the buffer associated with an open
random file, there exists a need to change numeric data into a string form.
"MKD$" provides a way to change numeric data into a string. The string
formed by "MKD$" will always be eight bytes in length, regardless of the
actual value to be converted. The resultant string value obtained when
performing an "MKD$" command will be the compressed form of a
number, contained in an eight-byte string. After a numeric value has been
changed into an eight-byte compressed string, it may then be placed into a
buffer via the "LSET' and "RSET' commands. (Note: This is not the
same as the .. S1R$" command, as "S1R$" produces an ASCII string, not a
compressed string representation of a number.)

BASIC Statements and Functions

For example:

10 ALLOCATE 1: 'Needed for compiler BASIC
20 Af=l.23456781: 8=2.71828
30 OPEN "R",1,"TEST/DAT"
40 FIELD 1,8 AS PY$,4 ASE$
50 LSET PY$=MKD$(At): LSET E$=MKS$(B)
60 PUT 1,1
70 CLOSE

The string-encoded contents of "A#" are "LSET" into the first eight bytes
or the record buffer, effectively storing "A#", and "B" is stored in the next
four bytes arter that The program could go on to make other "LSETs" and
"RSETs", then write the buffer to a record and close the file.

Suppose you have opened and fielded a random file, and wish to place a
double precision value into the buff er. The fielded variable you are
dealing with is "A8$", and the value you wish to place in the part of the
buffer pointed to by "A8$" is contained in the variable "A8#". The
following command will cause an eight-byte compressed string
representation of the value stored in "AS#" lo be written lo the portion of
the buffer pointed to by "AS$".

LSET A8$=MKD$(A8t)

Note that the fielded length of the variable "AS$" must be at least eight
bytes, and in most cases will be exactly eight bytes.

177

BASIC Reference Manual

MKI$ MKI$

The MK1$ function (MaKe Integer string) will change a numeric value
into a two-byte string which is a compressed representation of the value.
This command is used primarily with the "LSET" and "RSET" commands
to place numeric data into the buffer associated with an open random file.

Compiler BASIC and Interpreter BASIC

MK1$(exp) Function

exp Is a numeric expression of the desired type

Since only strings may be stored in the buffer associated with an open
random file, there exists a need to change numeric data into a string form.
MKI$ provides a way to change numeric data into a string. The string
formed by "MKI$" will always be two bytes in length, regardless of the
actual value to be converted. The numeric value must be within the range
of ~2768 to +32767, inclusive. If the value is not an integer, any numbers
to ,l,\t~sight of the decimal point will be truncated. To convert a two-byte
compressed string representation of a number back to a numeric value, use
the "CVI" function.

The resultant string value obtained when perf onning an .. MK.I$" command
will be the compressed form of an integer, contained in a two-byte string.
After a numeric value has been changed into a two-byte compressed
string, it may then be placed into a buffer via the "LSET' and "RSET'
commands. (Note: This is not the same as the "STR$" command, as the
"STR$" command produces an ASCII string, not a compressed string
representation of a number.)

Suppose you have opened and fielded a random file, and wish to place an
integer value into the buffer. The fielded variable is "A2$", and the value
is contained in the variable "A2%". The command LSET
A2$=MK1$(A2o/o) will cause a two-byte compressed string representation
of the value stored in "A2%" to be written to the portion of the buffer
pointed to by "A2$". Note that the fielded length of the variable "A2$"
must be at least two bytes, and in most cases will be exactly two bytes.

178

BASIC Statements and Functions

MKS$ MKS$

The MKS$ function (Ma.Ke Single precision string) will change a numeric
value into a four-byte string which is a compressed representation of the
value. This command is used primarily with the "LSET" and "RSET"
commands to place numeric data into the buffer associated with an open
random file. The syntax for the "MKS$" command is:

Compiler BASIC and Interpreter BASIC

MKS$(exp) Function

exp Is a numeric constant or expression of the desired
type.

Since only strings may be stored in the buffer associated with an open ran
dom file, there exists a need to change numeric data into a string form.
MKS$ provides a way to change numeric data into a string. The string
Conned by "MKS$" will always be four bytes in length, regardless of the
actual value to be converted. The resultant string value obtained when per
fonning an "MKS$" command will be the compressed form of a number,
contained in a four-byte string. After a numeric value has been changed
into a four byte compressed string, it may then be placed into a buff er via
the "LSET' and "RSET' commands. (Note: This is not the same as the
"STR$" command, as "STR$" produces an ASCII string, not a compressed
string representation of a number.) To convert a four-byte compressed
representation of a number back to a numeric value, use the "CVS"
command.

Suppose you have opened and fielded a random file, and wish to place a
single precision value into the buff er. The fielded variable you are dealing
with is "A4$", and the value you wish to place in the part of the buffer
pointed to by "A4$" is contained in the variable "A4!". Then LSET
A4$=MKS$(A41) will cause a four-byte compressed string representation
of the value stored in "A41" to be written to the portion of the buffer
pointed to by "A4$". Note that the fielded length of the variable "A4$"
must be at least four bytes, and in most cases will be exactly four bytes.

179

BASIC Reference Manual

&O &O

This function indicates that the argument is an octal number rather than a
decimal format number.

Compiler BASIC and Interpreter BASIC

&Od0 ... d5 Octal number Function

To represent a number in its octal format, you may use the characters
"&O" as a prefix to the number. Interpreter BASIC also allows you to
designate octal simply with the "&" prefix, thereby dropping the "O";
Compiler BASIC requires the "O".

One to six octal digits may follow the "&O" prefix. Octal digits consist of
the numeric digits 0-7. The number represented using the "&O'' prefix will
always be taken as two's complement notation. The largest octal number
which may be represented is &O 177777.

For example, the assignments:

A•BAND&O70

and

A•BAND56

are functionally equivalent Other examples are:

A=&Oll
A=&170000

180

A would be set equal to the decimal number 9.
A would be set equal to the decimal number -4096.

BASIC Statements and Functions

OCT$ OCT$

This DOS 6 Interpreter BASIC function returns in string fonn, the octal
value of a number.

DOS 6 Interpreter BASIC

OCT$(exp) Function

exp Is any numeric expression.

In a manner similar to HEX$ and BIN$, OCT$ will provide a character
string representing the value or an expression which is expressed in octal
digits: "O" through "7". Por instance, after typing the following program
and running it,

10 A$=OCT$(256)
20 PRINT A$

the display screen will show:

10 A$=OCT$(256)
20 PRINT A$
RUN
400
Ready

181

BASIC Reference Manual

ON exp ON exp

This statement allows your program to invoke conditional branching and
subroutine calls.

Compiler BASIC and Interpreter BASIC

ON exp GOTO addrllst

ON exp GOSUB addrllst

Statement

Statement

exp Designates the branch index of addrlist, and is in
the range <0-255>.

(Jddrlist Is a list of line numbers (or Compiler BASIC labels).

ON - GOTO substitutes for a long list of compares and GOTOs. The exp
indexes the line number or label address list. If there are fewer than exp
addresses in the' list, the statement following the "ON ... GOTO" or
"GOSUB" is executed.

Example Program:

S REM
10 REM Simplified counting schema .••
20 REM
30 REM (Note: unsuitable for check-writing
:routines)
40 REM
45 FOR X=l TO S
SO ON X GOTO 100,200,300
55 PRINT"MANY"
60 NEXT
70 PRINT" •.• ":END
100 PRINT"ONE":GOTO 60
200 PRINT"TWO":GOTO 60
300 PRINT"THREE":GOTO 60

182

BASIC Statements and Functions

ON BREAK ON BREAK

This Compiler BASIC statement is used to provide <BREAK> key control
of your program.

Compiler BASIC

ON BREAK GOTO addr

addr Is either a LINE nwnber or a LABEL.

Statement

ON BREAK GOTO addr causes a jump to the specified line nwnber or
label if the <BREAK> key is hit and the BREAK scan is activated. "'ON
BREAK GOTO O" disables <BREAK> key branching, parallel to "'ON
ERROR GOTO O"'. Causing an "'ON BREAK GOTO addr" jump also
automatically disables <BREAK> key branching.

Note that the function, "BRL", contains the line number where the
BREAK occurred. This is similar to the "'ERL" function used after an "'ON
ERROR GOTO" statement.

11BKON" and "BKOFF" can be used to effectively tum the <BREAK> key
"on" or "off', respectively. They affect only the BREAK scan flag.
"'BKON" will have no apparent effect if the "-NX" directive flag has been
specified, since the BREAK scan code calls will be left out of the
compiled program.

Example Program

5 ON BREAK GOTO 100
10 PRINT"Ho hum ..• "
20 FOR X=0 TO 1E12: NEXT
30 PRINT"Oh boy, Let's count to a quadrillion
now!"
40 END
100 PRINT"Thanks! Saved from a fate worse than
Scarfman "

183

BASIC Reference Manual

ON ERROR ON ERROR

This statement is used for runtime program error control.

Compiler BASIC and Interpreter BASIC

ON ERROR GOTO acldr Statement

addr Is either a line number (or a Compiler BASIC label)
which specifies the target of the branch.

During the execution of your BASIC program, if an error occurs, the
program will cease. The response depends on whether it is an Interpreter
BASIC or Compiler BASIC program. Compiler BASIC will normally
print an error message,

RUNTIME ERROR CODE ccc IN SOURCE UNE flllll

and."stop program execution when a runtime error is detected. An
Inteq,reter BASIC program will stop and display one of the BASIC error
messages. You can control the program halt by using an "ON ERROR
GOTO" statement. H an ''ON ERROR GOTO addr" is active at the time
the program error is detected, program execution branches to the address
specified by the "ON ERROR GOTO" statement on occurrence of a
runtime error. Once active, the statement "ON ERROR GOTO 0" disables
this feature and causes the visual error message previously mentioned.

To continue the program's execution, use the "RESUME" statement.

The "ERROR" command can be used to force a runtime error to occur
(usually used to certify the correctness of your error trapping routine).

184

BASIC Statements and Functions

OPEN OPEN

The OPEN command allows you to open random or sequential data files
in order that input/output may occur between the computer and the given
file. The general syntax for the "OPEN" command is:

Compiler BASIC and Interpreter BASIC

OPEN "type$",bufnum,"filespec$"[,reclen] Statement

type$ Is the type of file access you wish to deal with
(random or sequential). It may be represented as a
string constant enclosed within quotes, or as a string
expression. (See Type Tables)

bufnum Is the number of the buff er (file control block)
you wish to use to perform the disk 1/0; this may be
a numeric constant or a numeric expression, and
must be an integer value within the range of 1 to the
total number of active files declared when entering
BASIC, (or with ALLOCA1E).

filespec$ Is the name of the disk file or device to access.

reclen

It may be represented as a string constant or a string
expression.

Is an optional expression in the range (1-255)
designating the number of bytes in each record of
the file to be opened. This pertains to random files
only and should match the previous record length if
the file already exists. If reclen is not used, it will
default to 256. If reclen is specified as 0, it will be
assumed to be 256. If BLK=OFF is specified when
entering DOS S BASIC, reclen cannot be specified
in an OPEN statement, and will default to 256.

Before a disk file can be manipulated it must first be OPENed. Also,
before any compiler BASIC file can be opened, space for the total number
of simultaneously open files must be allocated using the .. ALLOCA1E"

185

BASIC Reference Manual

statement; this is similar to the function of specifying the maximum
number of files via the "F=fi.les" parameter used when invoking the
BASIC interpreter.

In order to write information to and retrieve information from a disk file,
the file must be opened using the "OPEN" command. The "OPEN"
command establishes the capability of reading from and writing to a disk
file by creating a file control block (FCB). This FCB contains information
needed by the computer, so that the computer may interact with the disk
file. In addition, the "OPEN" command establishes a buffer which is used
by the computer as a temporary storage place for information that will
pass between the computer and the disk file.

There are different allowable file types, depending on the BASIC version;
however, there are really only three fundamental types of files: Interpreter
BASIC supports both Random Record Access and Sequential Access;
Compiler BASIC supports these two plus list-directed Extended. In all
cases, the designated file type string character may be upper or lower case.

Sequential files are file types that allow for accessing data in a specified
sequence. That is to say, if you wish to retrieve the tenth piece of
information in ~ file, you must read in the nine data items preceding the
it~,in questionJ>efore it may be accessed.

Random access files are file types that allow you to directly access any
piece of information in a file, regardless of the physical location of the
data within the file. Because of this nature, random access files are also
known as direct files.

It is beyond the scope of this manual to discuss the techniques involved in
creating and accessing information in random and sequential files. What
will be provided for you here is the syntax needed to open all types of
random and sequential files.

IMPORTANf NOTE

It is strongly advised that no data file be in an open state at any
given time using more than one buffer. BASIC will allow you to
open the same file at the same time using more than one buffer;
however, this practice may lead to the destruction of data files on
the diskette in questionlt

186

BASIC Statements and Functions

Opening sequential files.

There are two basic modes available for use when dealing with sequential
files; the input mode, and the output mode. The following list shows all of
the different "OPEN" commands that may be issued when dealing with
sequential files.

Sequential File Access - Type Table
Type Direction File Status BASIC
"I" Input Must exist 15,16,C

"00 Output Old or new 15,16,C
"00" Output Must exist (old) 15
"ON" Output Must not exist (new) 15

"E" Output, extend Old or new 15,16,C
"EO" Output, extend Must exist (old) 15
"EN" Output, extend Must not exist (new) 15

Note: 15=00S 5 BASIC, 16=D0S 6 BASIC, C=Compiler BASIC

With sequential access, a file is read ("I") or written ("0" or "OE"),
basically a byte at a time, with INPUT# or PRINT#, respectively. BASIC
prepares a type "E" file by positioning it to its end as soon as it is opened.
This permits you to extend the file by appending new information to the
existing data. Type "E" can also be specified for a new file.

The Compiler BASIC "POSFIL .. command described elsewhere can set
the read or write (determined automatically by file type) position to any
point in a sequential file (limited by existing file size in "I" mode, free
disk space in "O" mode).

The input mode of sequential files allows you to input information from an
existing file. No output to the file may be done if it has been opened for
input. The file to be opened for input must exist, or the OPEN·r
command will return a rile not found error. Once the file has been opened.
information may be retrieved from it using the "INPUT#" and
"LINEINPUT#" commands.

The output mode of sequential files allows you to output information to
the file. No input from the file may be done if it has been opened for

187

BASIC Reference Manual

output Once the file has been opened, information may be written out to it
using the .. PRINT#" command. There are up to six types of output modes
available for use with sequential files; these vary with the BASIC.

The OPEN"o• output mode, available for all BASICs, functions in the
following manner. If the file opened does not exist, it will be created, and
information will be written to the file starting at the first byte of the file. If
the file opened does exist, any information previously stored in the file
will be lost, as the new information to be placed in the file will be written
over the existing information, starting at the first byte of the file.

The OPEN"OO• output mode, available for DOS 5 BASIC, functions in
the following manner. If the file opened does not exist, a file not found
error will be generated, and the file will not be created. If the file opened
does exist, OPEN"OO• will function identically to OPEN"O" in the case
where the file already exists.

The OPEN"ON" output mode, available for DOS 5 BASIC, functions in
the following manner. If the file already exists, you will not be allowed to
open the file, and the error file olreody exists will be generated. The
existing file will not be altered in any way. If the file does not exist, it will
be created, and information will be written to the file starting with the first
byte of the file.

The OPEN"E" output mode, available for all BASIC's, functions in the
following manner. If the ftle does not exist, OPEN"E" will function
identically to OPEN"O". If the file already exists, the file will be opened,
and any information that will be written lo the file will be appended to the
end of the existing information. The file will be extended to include both
the old and the new information.

The OPEN"EO" output mode, available for DOS 5 BASIC, functions in
the following manner. If the file does not exist, a File not found error will
be generated, and no file will be created If the file already exists, the file
will be opened, and any information that will be written to the file will be
appended to the end of the existing information. The file will be extended
to include both the old and the new information.

The OPEN"EN" mode, available for DOS 5 BASIC, functions identically
lo the OPEN"ON" output mode.

188

BASIC Statements and Functions

Example - Opening sequential flies

Suppose that you wished to open a sequential file named MYDATNSEQ,
using buffer number 1. The statement used to open the file for input would
be as follows:

OPEN"r, 1,"MYDATA/SEQ"

If you wished to open the same file for output using buff er number two,
one of the following commands could be used, depending on whether or
not you request that the file be new or old, and whether or not you wish lo
extend the file:

OPEN"O" ,2,"MYDATA/SEQ"
OPEN"OO" ,2, "MYDATA/SEQ"
OPEN"ON" ,2, "MYDATA/SEQ"
OPEN"E" ,2, "MYDATA/SEQ"
OPEN"EO" ,2, "MYDATA/SEQ"
OPEN"EN",2, "MYDATA/SEQ"

Opening random files

All BASIC's
DOS5BASIC
DOS5BASIC
All BASIC's
DOS 5BASIC
DOS5BASIC

Unlike sequential files, when dealing with a random file, you have the
capability of reading from and writing to the file using only one "OPEN"
command. The statements "PUT'' and "GET' differentiate between
writing to the file and reading from the file, respectively. There are four
different types of "OPEN" statements that may be executed when opening
a random file. They vary with the BASIC and are:

Random File Access - Type Table
Type Direction File Status BASIC
"D" Input/Output old or new 16
"R" Input/Output old or new All BASIC's
"RN" Input/Output Must not exist 15
"RO" Input/Output Must exist 15
"X" 1/0 List Directed old or new C

Note: IS=DOS 5 BASIC, 16::DOS 6 BASIC, C=Compiler BASIC

The compiler BASIC "AELD" statement for an "R"-mode file supports a
field length of 256. The corresponding "OPEN" statement should not

189

BASIC Reference Manual

include a reclen argument; the default is a record length of 256. This
allows you to field a 256-byte record in a single string variable.

10 CLEAR 1000:ALLOCATE 1
20 OPEN "R",l,"TEST/DAT"
30 FIELD 1,256 AS A$
40 LSET A$==STRING$(256,".")
50 PUT 1,1
60 CLOSE
SYSTEM "list test/dat (h)"

The OPEN"R" mode, available for all BASIC's, functions in the following
manner. The file specified will be opened whether it exists or not, and will
be created if it does not exist. After the file has been opened, the buff er
used in the "OPEN" statement may be fielded using the "AELD"
statement, and records may then be retrieved from or placed into the file
via the "PUT" and "GET" statements. Note that DOS 6 BASIC accepts the
type as either "R" or "D".

The OPEN"RN" mode, available for DOS 5 BASIC, functions in the
following manner. If the file already exists, you will not be allowed to
open it. The file will remain untouched, and the error File olreody exists
will occur. If the;file does not exist, it will be created, and the OPEN"RN"
command will function in the same manner as the OPEN"R" command.

The OPEN"RO" mode, available for DOS 5 BASIC, functions in the
following manner. If the ftle does not exist, no file will be created, and the
error File nol found will occur. If the file does exist, OPEN"RO" will
function in the same manner as OPEN"R".

Compiler BASIC also supports a fairly powerful random access file mode,
OPEN"X". This extended mode allows the use of lists of simple variables
as field specifiers rather than the cumbersome, difficult to conceptualize
conventional FIELD statement.

Extended file mode uses the usual 256 byte LRL disk random record
length but allows logical record lengths of from 1 to 32767 bytes long.
This record length is defined at open time, with the statement:

OPEN ·x· ,bufnum, "filename$" ,reclen

190

BASIC Statements and Functions

where "reclen" is the desired record length; "reclen" must include two
bytes for each string variable specified in the XFIELD statement. Note
that this record length is entirely the responsibility of the programmer to
track; it is entirely possible to close a previously opened and written-to
extended file and open it again with a different record length. No explicit
error will occur. The record structure is defined with the XFIELD
statement. Its format allows either numeric or string variables in its list.
Array variables are not allowed in the list.

Example - Opening random files

Suppose you wish to open a random file named MYDATA/RND, using
buffer number 3, with record lengths of 52 bytes. The following "OPEN"
command may be used to open the file.

OPEN"R" ,3, "MYDATA/RND. ,52 All BASIC's

For more information on using both random and sequential files, refer to
FIELD, XFIELD, GET, PUT, LSET, RSET, INPUT#, LINEINPUT#, and
PRINT#.

Random access, specified by an ·R• type in all BASIC's (or "D" in DOS 6
BASIC) in the "OPEN" statement, implies that file manipulation will be
done discretely with any selected individual record in the file via the
"GET" (get or read record) and "PUT' (put or write record) commands,
which are described in detail elsewhere in this manual.

The OPEN statement also allows you to open logical devices for
sequential 1/0. For example, the printer device may be opened for output
via a statement of the fonn,

OPEN •o•, 1, .. PR.

The standard disk-type PRINT# statement would then be used to "print" to
the printer.

OPEN "0",1,"*DO"
PRINTfl,"Data output to a file named '*DO'"
PRINTfl,"This is a continuation of output ••• "
CLOSE 1

191

BASIC Reference Manual

OPTION BASE OPTION BASE

This DOS 6 statement establishes the minimum value for an array
subscript as zero or one. It's syntax is:

DOS 6 Interpreter BASIC

OPTION BASE lntvar

lntvar Is the value of the base, 0 or 1.

Statement 6

BASIC arrays are normally established so that the first element is
referenced with an index of zero; i.e. ARRA Y(O). Without use of any
DIMension statement, arrays default to a maximum element index of 10;
thus, undimensioned arrays can store eleven elements. The "DIM"
statement is used to declare the specific maximum element of an array.
But since the first element of an array is referenced as zero, an array
acrually has one more element than the magnitude of the dimension.

Some programmers prefer to avoid using index zero for an array element;
but this will waste the space of one element for each array used. The
"OPTION BASE" statement allows you to tell BASIC that you will not be
using index O; thus, BASIC avoids reserving memory space for the zeroth
elemenL This statement must precede any "DIM" statement used to
declare the bounds of an array.

Note: Do not specify OPTION BASE 1 if you are going to use the
BSORT array sorting utility available separately.

192

BASIC Statements and Functions

OUT OUT

This command is used to send a value to a specified CPU port.

Compiler BASIC and Interpreter BASIC

OUT portnum, value Statement

portnum Is a numeric expression which evaluates to the range
<0 to 255>, specifying a CPU port number.

value Is a numeric expression which evaluates to the range
<0 to 255), specifying a byte to be sent out the port.

OUT provides a means to send information to any of the CPU 1/0 ports.
The ac;sembler can also accomplish this as a matter 'of course by
assembling a native code "OUT' instruction directly.

Programmer's Note:

Under Interpreter BASIC, the value of portnum can actually range from 0
through 32767; the actual value used for the port determination will be
"portnum modulo 256". Thus, a portnum of 256 designates port O; a
portnum of 257 designates port I. However, the high-order value will be
presented to the high-order address lines of the CPU address bus. This may
be useful in addressing internal and external ports of the 64180/ZlSO
processor which requires a high-order zero value to reference internal
ports and a high-order non-zero value to reference external ports.

193

BASIC Reference Manual

PAGELEN PAGELEN

This Compiler BASIC statement is used to set the physical printer page
length.

Compiler BASIC

PAGELEN • exp Statement

exp Is a numeric expression which evaluates to the
range <2-255>.

This statement sets the printer page length for use with all printing
operations. Note this is the physical length, in lines, of your printed page.
Its use is similar to using the DOS FORMS filter with "Page=exp";
however, Compiler BASIC's paging control is strictly internal to BASIC.

For additional printer paging statements, see "LINES PAGE",
"LMARGIN", "P'ZONE", and "RMARGIN".

194

BASIC Statements and Functions

PAINT PAINT

This Compiler BASIC statement is used to fill in a bounded shape.

Compiler BASIC

PAINT(x,y)(,color] StatementC

x, y Is the coordinate of a point interior to the bounded
shape. X is a numeric expression which evaluates to
the range <0 - 127> for 64-column screens and

color

<0 - 159> for SO-column screens. Y is a numeric
expression which evaluates to the range <0 -47> for
16-row screens and <0- 71> for 24-row screens.

Is the color used to fill the shape <0,1>; where
black = 0 and white= 1. If color is omitted, it will
default to 1.

PAINT can be used to fill in any shape defined by a boundary of pixels of
the same color as the .. color .. operand. The point "x,y .. , entered in pixel
coordinate values, must be interior to the bounded shape.

The following example will plot a triangle, fill in the interior of the
triangle, then pause awaiting a key entry.

05 CLS
10 PLOT s,10,10 TO 120,10
20 PLOT S,50,40 TO 120,10
30 PLOT S,10,10 TO 50,40
40 PA=l:PAINT(55,15),PA
50 A$=WINKEY$

195

BASIC Reference Manual

PEEK PEEK

This function obtains the byte stored at a memory address.

Compiler BASIC and Interpreter BASIC

PEEK(exp 16) Function

exp16 Represents a memory address in the range
<0 to 32767> and <-32768 to -1> (i.e. 0 to 65535).

PEEK is a means to "look" directly into any selected byte in the
computer's memory. For example, on the TRS-80 Model I/III, PRINT
PEEK(O) prints a 243 (from ROM), or the Z80 instruction .. DI", disable
interrupts, the first instruction executed on power up.

196

BASIC Statements and Functions

PLOT PLOT

This Compiler BASIC statement is used to plot a line of pixels.

Compiler BASIC

PLOTflag,xl,yl TO x2,y2 Statement

xl,yl

x2,y2

flag

Specifies the coordinate point of one line endpoinL

Specifies the coordinate of the other line endpoinL

Single character designates the type of pixel action:
"S" signifies unconditional SET;
"R" signifies unconditional RESET;
"C" signifies pixel COMPLemenL

PLOT is a statement that allows an entire line to be drawn at once. It can
set, reset, or complement a line on the screen. The coordinates xl,yl and
x2,y2 range as follows: XI and x2 are numeric expressions which
evaluate to the range <0 - 127> for 64-column screens and <0 - 159> for
80-column screens. Yl and y2 are numeric expressions which evaluate to
the range <0 - 47> for 16--row screens and <0 - 71> for 24-row screens.
For example:

PLOT S,0,0 TO 127,47 would set a line between (0,0) and (127,47).
PLOT R, 127,47 TO 0,0 would reset that same line. And, PLOT C, 127,0
TO 0,47 plotted after PLOT S,0,0 TO 127,47 was executed would
produce a line going from the upper right hand comer of the screen to the
lower left, resetting the dots where it intersected in middle of the line
drawn from the upper left comer to the lower righL

The flag value can also take on any of the three values: "SB", •'RB", or
"CB". These nag values stand for .. set box", "reset box", and
"complement box" respectively. These arguments direct PLOT to plot a
box using the two coordinate pairs as the northwest and southeast comers
of a rectangle.

197

BASIC Reference Manual

Note that for the .. PLOT'' graphics statement, a coordinate value greater
than the legal range will be truncated to the maximum pennissible value.
Note also that only the low-order byte will be tested for validity.

The following program makes an interesting fan-line pattern on the
screen.

10 FOR Y=0 TO 47 STEP 3
20 PLOT S,0,0 TO 127,Y: 'Draw line from
(0,0) to right edge
30 PLOT S,127,47 TO 0,47-Y: 'Draw line from
(127,47) to left edge
40 NEXT

198

BASIC Statements and Functions

POINT POINT

This r unction obtains the point value or the specified pixel location.

Compiler BASIC and DOS 5 Interpreter BASIC

POINT(x,y) Function

x,y Is the coordinate of the pixel. "x" is in the range
<0-127 or 0-179> and 'Y' is in the range
<0-47 or 0-71>

POINT checks whether any selected graphics pixel on the screen is set or
not. It returns -1 (TRUE) if the point is SET, 0 (FALSE) otherwise.
Because of these response values, "POINT'' is typically used as the
expression under test in an "IF" statement.

199

BASIC Reference Manual

POKE POKE

This statement is used to place a value into a memory location.

Compiler BASIC and Interpreter BASIC

POKE exp 16,exp8 Statement

exp16

exp8

Specifies a memory address in the range
<0 to 32767> and <-32768 to-1> (i.e. 0 to 65535).

Is a numeric expression which evaluates to
the range <O to 255>.

POKE allows direct modification of any single byte RAM location in
memory. "POKE" is the complement of "PEEK".

Compiler BASIC also provides "WPOKE" to allow direct modification of
any two-byte (word) RAM location in memory. "WPOKE" pokes two
bytes at a time in conventional low order/high order fonnat into the
specified address, whereas "POKE" inserts only a single byte.

200

BASIC Statements and Functions

POP POP

This Compiler BASIC statement is used to escape from a GOSUBed
subroutine.

Compiler BASIC

POP StatementC

POP is a quick and dirty way to get out of a messy situation whilst stuck
in the middle of a subroutine. It erases all effects of the last "GOSUB"
from the stack, allowing clean error recovery, or whatever. This "POP"
operation is not to be confused with the CPU opcode, POP.

Example Program:

10 GOSUB 20:PRINT"RETURNED AND BACK TO 10":END
20 GOSUB 30:PRINT"LINE 20. RETURNING TO 10.":

RETURN
30 PRINT"LINE 30. 'POP' and 'RETURN'."
40 POP:RETURN

The "POP" at line 40 wipes out the "GOSUB" at line 20, causing the
"RETURN" directly following the "POP" to return to the next-lesser-level
of"GOSUB", the one made in line 10.

201

BASIC Reference Manual

POS POS

This function returns the current position of the cursor relative to the start
of the line it appears on.

Compiler BASIC and Interpreter BASIC

POS(dummy exp) Function

dummy exp ls a required expression which is ignored.

POS returns the current column position of the cursor. For instance:

PRINT:PRtNrHELLO";:A=POS(0)

assigns 5 to "A", the cursor position after "HELW" is printed.

202

BASIC Statements and Functions

POSFIL POSFIL

"POSFIL" is a Compiler BASIC statement which allows you to position a
sequential input/output file pointer for subsequent Input/Output operations.

Compiler BASIC

POSFIL(#bufnum,recnum,offset) Statement

bufnum Is a file control block buffer number, <1-15>
which corresponds to an open file.

recnum Is the disk file's 256-byte record number.

offset Is the offset within the record, <0-255>

POSFIL is useful for positioning the sequential input/output pointer for
selective sequential reading and writing. As with "RDGOTO", which
selects any "DATA" statement in a program for the next "READ",
"POSFIL" is the equivalent extension for sequential files.

Example Programs:

10 ALLOCATE l:OPEN "O",1,"TEST/DAT"
20 POSFIL(fl,2,0) :PRINTfl,"HELLO":CLOSE

The string "HELLO" is written from the beginning of the second record in
the file, as opposed to the default of the start of the first record.

10 ALLOCATE 1:OPEN "I",1,"TEST/DAT"
20 POSFIL(fl,5,67) :INPUTfl,A$:CLOSE

A$ is sequentially read, starting from the 67th character of the fifth record
in the file "TEST/DAT" (assuming that TEST/DAT contains at least five
records).

203

BASIC Reference Manual

PRINT PRINT

This statement is used to print data to the video screen.

Compiler BASIC and Interpreter BASIC

PRINT (#numexp,J[@pos,J (Item][,](;]
(TAB(exp)J •.•

Statement
Statement

numexp Is a numeric expression within the range <-3 to 15>;
1 tluu 15, send to disk file. For compiler BASIC,
-3, send to PRINTER; 0, send to VIDEO display.

pos Is a numeric expression between O and 1023 (0-1919
for DOS 6) specifying a new cursor relative position.
For DOS 6 BASIC, pos can be entered
as (row.column).

Hem Is a "string literal" or a numeric / string expression;
a list of items may be provided.

,; Are delimiters.

PRINT is the facility used to display data on the video screen. PRINT#, a
version of "PRINT'', is also used to write data to a sequential disk file
(type "O" or "E"); "PRINT#" is discussed in detail under its own heading.
All "LPRINT" statements are equivalent to "PRINT" statements, but are
directed to the line printer rather than the video screen.

The data to be displayed may be a single item or a list of items. There are
four options for terminating a variable in the item list A comma delimiter
or equivalently TAB(255) tabs the cursor to the next screen zone. These
zones are at intervals of 16 character positions (0, 16, 32, 48, 64). A semi
colon delimiter retains the print position immediately following the output
of item; however, a trailing blank space follows all numbers. By not
specifying a terminator, the next "PRINT'' will occur on the next print
line. You can tab to a particular column by specifying a "TAB(exp)" with
exp equal to the column position. For example:

204

BASIC Statements and Functions

10 CLS:I=l5.8
20 PRINT "012345678901234567890123456789"
30 PRINT I;TAB(26);I
RUN

012345678901234567890123456789
15.8 15.8

When execution of a program in BASIC is ended, and you are returned
back to the BASIC Ready prompt, BASIC turns the cursor on. If you do a
"PRINT CHR$(15);" from the BASIC Ready prompt, it may look like
nothing happens. Indeed the net result is that you are back where you
started. But put exactly the same statement inside a program, followed by
a statement that should present a cursor, "INPUT A$" for example, and the
cursor is gone! Then comes the end or the program and the BASIC Ready
prompt, complete with cursor. This can affect video that is routed to
printers if they happen to respond to this code. If you BREAK out of a
program, the cursor will be turned back on at Ready and will still be on
when you CONTinue.

All "PRINT" statements used in Interpreter BASIC programs should
compile and function with equivalence with no modifications necessary
under Compiler BASIC.

The default screen or printer TAB positions (i.e. every 16 columns) can be
altered with the "SZONE" and "P'ZONE" commands respectively
documented elsewhere in this manual. A comma delimiter or equivalently
T AB(255) tabs the cursor to the next screen or printer zone, depending on
the current output mode.

"USING" is a string expression under Compiler BASIC. Compiled and
interpreted BASIC "PRINT USING" statements usually produce the same
output; however, under Compiler BASIC, the target string of a "USING"
may be manipulated with the string functions just like any other string.

205

BASIC Reference Manual

PRINT# PRINT#

The PRINT# command allows you to output data to a sequential file. The
syntax is:

Compiler BASIC and Interpreter BASIC

PRINTtbufnum, Item 11st Statement

bufnum Is the buffer used to open the file. It may be
expressed as a numeric constant or a numeric
expression.

Item list Is a list of constants and/or expressions that contains
the data you wish to output to the file.

PRINT# writes data to an "O .. or "E" type file. Except for "PRINT@",
information following the "PRINT #bufnum", and output from it, is in the
same format as a screen "PRINT" statement, except that output is directed
to a ftle instead of to the screen.

Numeric constants, numeric expressions, string constants and string
expressions may all be contained within the item list. If more than one
value is to be output to the fde using a single "PRINT#" statement, these
values must be separated by some type of delimiter. The uses of delimiters
in a PRINT# command will be explained throughout this section.

The "PRINT#" command is used in conjunction with any type of
OPEN•o• or OPEN"E• command. After a file has been opened, data may
be output to the file via the "PRINT#" command. Once a file has been
created using the OPEN·o· or OPEN·e• and subsequent "PRINT# ..
commands and then closed, the information in the file may be accessed
using the OPEN"r and "INPUT#" or "LINEINPUf# .. commands.

In most cases, data written to a sequential file is stored in ASCII format.
For numeric data, a sign byte will always precede the numeric
information. If the value is positive, the sign byte will be represented by a
space. A trailing space will always follow the ASCII representation of the

206

BASIC Statements and Functions

value. Keeping the above in mind, the minimum amount of bytes required
to store a numeric value in a sequential file is three (the sign byte, a digit.
and the trailing space).

For string data, all characters included in the string value will be written to
the file, and no preceding or trailing characters will be written to the file.
Special considerations do need to be taken into account when writing
string values to a sequential file, as there are some peculiarities involved
with the "INPUT#" command when trying to access string information
stored in a sequential file. These special cases will be pointed out
throughout this section.

The "PRINT#" command resembles the "PRINT'' command in many ways
with respect to how information is physically written to the file. Some of
the punctuation used in the "PRINT#" command will cause data to be
written to the file in much the same way that this punctuation causes data
to be printed to the screen using the "PRINT'' command.

Punctuation is very important when using the "PRINT#" command. The
following will describe the punctual.ion which is allowed with the
"PRINT#" command, and the effects of using different punctual.ion.

Use of punctuation with the PRINT# command.

Different types of punctuation used to separate values to be output in a
"PRINT#" statement will cause the data to be physically written to the me
in different ways. The following list shows the punctuation required to
separate values contained in a "PRINf#" statemenL

;
" "
'

PRINT# Punctuation List

comma
semicolon
explicit comma

When separating output data contained in a "PRINT#" statement, you may
use either a comma or a semicolon. A semicolon will cause the next piece
or information to be written directly after the preceding data. A comma
will cause the next piece of informal.ion to be written at the next available
"tab'' position in the file. Tab positions will be denoted by 16-byte blocks,
starting from the last occurrence of a carriage return (ODH) in the file.

207

BASIC Reference Manual

In some cases, the explicit comma is used after string infonnation has
been written to the disk, to demarcate the end of the string value from the
beginning of the next piece of infonnation to be written out.

The following examples will illustrate the methods used to write data to a
sequential file, as well as the occurrences that will result when this data is
to be retrieved.

Example 1 - Writing numeric data to a sequential file.

Suppose you wish to write two numeric values out to a sequential file,
using one "PRINT#" command. The file you wish to write these values
out lo is named DATAl/SBQ, and has been opened using buffer number 2.
The variables you wish to write out to the file are "A%", which has been
assigned a value of 362, and "Bl", which has been assigned a value of
-2618.7. The following "PRINT#" command may be used to write these
values out to the file:

PRINTl2,A o/o;BI

The above statement will cause the values 362 and-2618.7 to be written to
the file in ASCII format. The image produced on the disk by this
"PRINT#" statement is shown below. (Note that throughout the rest of this
section, the image produced by the example "PRINT#" statements will
always follow the "PRINT#" statement. The image shown will be similar
to the DOS UST (H) command; each ASCII character will be displayed
with its corresponding hex value shown below the character.)

3 6 2 - 2 6 1 8 7
20 33 36 32 20 2D 32 36 31 38 2E 37 20 OD

Note the sign byte preceding each value, and the trailing space following
each value. Also note that the last byte written to the file is a carriage
return (OOH). A carriage return will always be written to the file after the
last item listed in a "PRINT#" statement.

Realize that a semicolon was used to separate the variables "A%" and
"Bl" in the "PRINT#" command. A comma could have been used instead;
however, the image of the data on the disk would have changed to the
following if a comma would have been used instead of a semicolon.

208

BASIC Statements and Functions

3 6 2
20 33 36 32

2 6 l
2D 32 36 31

20 20 20 20 20 20 20 20 20 20 20 20
8 7

38 2E 37 20 OD

Notice the series of spaces following the number 362. These will be
written to the disk as a result of a comma being used to separate the
variables "A%" and "Bl". As was noted earlier, when using a comma to
separate variables in a "PRINT#" statement, the value following the
comma will be written to the next tab position (the beginning byte of the
next block of 16 bytes). As depicted in the above displays, much disk
space will be wasted in writing to sequential files if the values in a
"PRINT#" statement are separated by commas instead of semicolons.

Example 2 - Writing string data to a sequential file.

Suppose you wish to write three string values out to a sequential file, using
one "PRINT#" command. The file is named "DATA2/SEQ", and has been
opened using buffer number 1. The variables you wish to write out to the
file arc "A$" (which has been a.c;signcd the value "AMBER"), "8$"
(which has been assigned the value "BROWN"), and the string constant
"GRAY". The following "PRINT#" command may be used to write these
values out to the file:

PRINT# I ,A$;", ";8$;", ";"GRAY"

The above statement will cause the values "AMBER", "BROWN" and
"GRAY" to be written to the file. The image produced on the disk by this
PRINT# statement is shown below.

A M B E R , B R O N N , G R A Y
41 4D 42 45 52 2C 42 52 4F 57 4E 2C 47 52 41 59 OD

There are many things to be noted in this example. The most prominent of
these is the use of the explicit comma(","). You will note from th~ above
display that along with the string values, commas were also written out to
the file (since they were enclosed within quotes as part of the list of values
to be written out). In most applications dealing with writing strings out to
sequential files, you will need to incorporate the explicit comma within
the list of values to be printed out by the "PRINT#". The reason behind

209

BASIC Reference Manual

this stems from the way "INPUT#" deals with retrieving information from
a sequential me.

Before continuing with more examples on the use of "PRINT#", a brief
discussion of using "INPUT#" with files created by "PRINT#" is in order.

How INPUT# ties together with PRINT#

As shown throughout this section, the punctuation used in the "PRINT#"
command is very important, and determines the manner in which
"INPUT##" will access this information. "INPUT#" deals with retrieving
numeric data in a different fashion than it does with string data.

When "INPUT##" requests the input of a numeric variable, it will begin
reading from the last accessed byte in the file. Any leading spaces that are
encountered will be ignored. Once "INPUT##" finds a non-space character,
it will read until it encounters either a space or a delimiter, and the value
assigned to the variable will be determined by performing a VAL function
on the characters read in. This is to say that any characters may be input
into a numeric variable, and the inputting of string values into a numeric
variable will not cause a Type mismatch error.

When "INPUT#" requests the input of a string variable, it will begin
reading from the last accessed byte in the file, and proceed until it finds a
non-space character. Once it finds a non-space character, it will read until
it encounters a delimiter, and the value assigned to the variable will be all
characters read in from the first non-space character to the delimiter. Note
from the above description that any "leading" spaces which are present in
the data file for the data element in question will be ignored by
"INPUT##", and the value assigned to the string will never have leading
spaces.

In all cases, when "INPUT#" requests an input of a variable, the input will
be terminated when a delimiter character is read in. For numeric inputs,
delimiters can be represented by either a space, a comma, or a carriage
return (OOH). In most cases, a comma should not be used as the delimiter
for a numeric input.

For string inputs, a delimiter can be represented by either a comma or a
carriage return. Realize that for any input of a variable, if the number of

21,0

BASIC Statements and Functions

characters read in will exceed 255, the input of the variable will tenninate
after the 255th character has been accessed.

One point to note is that in most cases, two delimiter characters should not
appear together in a sequential file. This occurrence will cause
unpredictable results when trying to input information from the file.

From the above paragraphs, it can be seen that in any one physical
"PRINT#" statement, if values are to be written out following a string
value, they must be separated from the string value by use of the explicit
comma. The general format which is recommended to perfonn such a data
write is as follows:

PRINT#b, ... ;string value;·, ·;next value; .••

Example 3 - Writing numeric and string data to a file.

Suppose you wish to write several string and numeric values out to a
sequential file using the same "PRINT#" statement. The file you wish to
write these values out to is named DATA3/SEQ, and has been opened
using buffer number 2. The string values you wish to write out are
contained in the variables "A$" (which has been assigned the value
"ANN"), B$ (which has been assigned the value "BE'TIY") and "C$"
(which has been assigned the value "CAROL"). The numeric values you
wish to write out are contained in the variables "A%" (which has been
assigned a value of "20"), "B%" (which has been assigned a value of
"32''), and "C%" (which has been assigned a value of "23"). The
following will show a "PRINT#" statement which may be used lo write
these values out to the file, and the associated image that will be written to
the disk as a result of perfonning the PRINT#.

PRINTf2,A%;A$;",";B%;B$;",";C%;C$
20 ANN, 32 BETT

20 32 30 20 41 4E 4E 2C 20 33 32 20 42 45 54 54
Y , 2 3 C A R O L

59 2C 20 32 33 20 -43 41 52 4F 4C OD

Please note from the above example that no explicit comma needs lo
follow numeric data. Also note that since "CS" is the last variable to be
written out in this "PRINT#" command, no explicit comma is needed after
it, as a carriage return will always be written out to the file after the last

211

BASIC Reference Manual

variable in a "PRINf#" command. This carriage return will serve as the
delimiter for subsequent "PRINT#" commands.

This concludes our discussion of the "PRINf#" command. It is
recommended that you create test files in order to explore the results of
various "PRINT#" statements. After sequential files have been created,
they may be examined by use of the DOS LIST filespec (H) command.
For further information, see "OPEN", "INPtrr#", and "LINEINPUT#".

212

BASIC Statements and Functions

PRINT USING PRINT USING

The PRINT USING command (and its associated "PRINT# USING'') will
allow you to output data using a specified format. The syntax for the
"PRINT USING" command is:

Compiler BASIC and Interpreter BASIC

[LJPRINT[#bufnum] USING format$;expllst Statement

bufnum When used, is the buff er used to open the file.
PRINT output is then directed to the sequential
file identified by bu/mun.

formal$ Is the control string fonnat you wish to use to output
the list of values. It may be represented as either a
string constant or a string expression.

explist Is the list of constants and/or expressions to output

The PRINT USING command will allow you to output data to the video
screen in the fonnat specified by the format string. Similarly, LPRINf
USING directs the same output to the line printer. The PRINT# USING
command will allow you to output the data to a sequential file in the
format specified by the fonnat string. Any format string which is
allowable in the "PRINT USING" command will also be allowable in the
"PRINT# USING" command, and will function in an identical manner.
For more information on the specifics involved in writing information out
to a sequential file, see "PRINT#".

"USING" is actually a string expression under Compiler BASIC.
Compiled and interpreted BASIC "PRINT USING" statements usually
produce the same output; however, under Compiler BASIC, the target
string of a "USING" may be manipulated, exclusive of any "PRINT''
statement, with the string functions just like any other string.

213

BASIC Reference Manual

The complete field specifier list for .. USING" is as follows:

214

+

••

Field Specifier List
Numeric Formats

Purpose I definition
One digit per # in field

Decimal point position

Print a comma before
every 3rd digit left of dp.

Print leading/trailing
sign (either+ or-)

Example
ffl: 3 digits,
round to nearest
integer

##.##: 2 digits
to left of dee.
point, round to
nearest hundredth

+ffl.##
ffl.##+

Print trailing sign if neg- ####.##
alive, or SPACE if positive

Fill unused digits with ••ffl.##
asterisks iutead of blanks;
adds 2 field positions

$$ Put dollar sign at $$#####.##
immediate feft of number

••$ Dollars sign at left of **$###.##
number and unused digits

11111111

nnnn

filled with Mterisks

Format output in
scientific notation

_ (underline) Print next chal'acter as
a literal character.

ffl.###1#
16,C6
15,CS

16

Note: 15=00S S In eter; 16=D0S 6 Interpreter; C=Compiler

BASIC Statements and Functions

String Formats
Spec. Description Example
! First character of string "!";" ABC" =

expression CIA"

%blanks% Include 2+# of blanks "% %"; 15,C
\blanks\ length substring of "ABCDE" = 16

string expression "ABC"

& Print the string without 16
modifications.

Note: 15=DOS 5 Interpreter; 16=D0S 6 Interpreter; C=Compiler

Note that when using the""'"'", "$$", or""'"'$" specifier, two additional
field positions will be specified.

Examples:

Column Positions
USING ·111.11·;3.157
USING ... llll.ll";1A5
USING "####.####"; 1.23456
USING "$$###.##";19.95
USING "$$11.11";19.95

Assume X=7 in following examples:

USING "l#l.l#";1.23,5.67,X•10

... "123456789
"" " 3.16"
"" "*****l. 45"
... " 1.2346"
= " $19.95"
• "$19.95"

=" 1.23 5.67 70.00"
USING "I r;"ALPHA","BETA" = "A B"

USING "Ill Ill.I ll.##";9.95,9.95,9.95
=" 10 10.0 9.95"

USING "II.II II.I ";4.556,X•l.5,91.499

USING "f##.##-";15.69
USING "l#f .##-";-15.69

= "4.56 10.5 91.50"
=" 15.69"
=" 15.69-"

Suppose you wish to write three numeric values out to a sequential file.
The name of the file is DAT NSEQ, and it has been opened using buff er

215

BASIC Reference Manual

number 1. The values you wish to write out are contained in the variables
"A%" (which has been assigned a value of 25), "Bf2 (which has been
assigned a value of 13.73), and "C%" (which has been assigned a value of
-17). The format string you wish to use has been assigned to the variable
"A$", and has the value:

Ill# #Ill.I## Ill#

The following will show a "PRINT# USING" command that may be used
to write out the above values, and the disk image created by the "PRINT#
USING" command.

PRIIITfl,USIIICAttAl,81,CI

2 S l 3 • 7 3 0 - l 7

20 32 35 20 20 20 20 20 20 31 33 2B 37 33 30 20 20 20 2D 31 37 OD

Note from the above example that the image created on disk conforms to
the format string specified. Unlike the "PRINT#" command, the use of
delimiters to separate the values to be printed out is arbitrary. That is to
say, there is no difference in using a comma as a delimiter as opposed to a
semicolon.

Note that Compiler BASIC allows you to also direct the output of a
"PRINT#bufnum" command to either the video screen or your printer by
specifying bufnum as O or -3 respectively. Expressing the bufnum as a
variable permits you to designate the output device at runtime. Thus, the
command PRINTl-3;1hls Is a tesr will print the text string on your
printer. For example, the same section of code could be used for both
screen and printer output simply by changing the value of a variable and
calling the same subroutine:

90 "SPRINT"
100 F=0:GOSUB "PRINT":' Send to screen
110 F~-3:' Send to printer
120 "PRINT"
130 PRINTIF,"TO: ";FRIEND$
140 PRINTIF,"FROM: ";SENDER$
150 RETURN

216

BASIC Statements and Functions

PUT PUT

PUT is used to write information from a record buffer to a specified
record of a random file. The information that is to be written out to the file
must have been placed into the buffer that was used to open the file prior
to being written out to the file. The syntax for the "PUT' command is:

Compiler BASIC and Interpreter BASIC

PUT bufnum[,recnum]
PUT bufnum,recnum

Statement I
Statement C

bufnum Is file control block buffer number, 1-15, used to
open the file

recnum Is the record number to write; it is required for
compiler BASIC but optional for interpreter BASIC.

PUT and GET are the two type "R" (or DOS 6 Interpreter type "D") and
type "X" disk file manipulation commands. "PUT' writes the contents of
the record buffer to the specified record in the specified CWJently open
file. "GET" reads a record from the specified currently open file into the
record buffer. ·

Note that the recnum operand is mandatory for Compiler BASIC. Under
Interpreter BASIC, if the record number, recnum, is not specified, BASIC
will first increment the current record number by one, after which it will
perform a "PUT" of the current record number. If no current record
number has been established, the computer will perform a "PUT' of
record number one, and the current record number will be set equal to one.

Suppose you wish to output data to a random file. The .file you wish to
perform the output to has the name FILF./RND, and has been fielded using
buffer number 2. The record you wish to write out to the file is record
number 23. Assume also that all of the values you wish to write out to the
file have been placed into the buff er using the proper "LSET" and "RSET'
commands. One of the following "PUT' commands may be used to write
the infonnation to the 23rd record of the file.

217

BASIC Reference Manual

PUT2,23
No/o•1:Nlo/o=30:PUT No/o+ 1,Nlo/o-7

After executing one of the above statements, the information stored in the
buffer associated with the file, FILE/RND, will be written out to the disk,
and will be placed in the file as representing the 23rd record in the file.
Once this information has been placed into the file, it may be retrieved
using the "GET' command.

For more information on using .. PUT", see "OPEN", "FIELD",
11XFIELD'', "LSET' and "RSET'.

218

BASIC Statements and Functions

PZONE PZONE

This Compiler BASIC statement is used to set the line printer print zones.

Compiler BASIC

PZONE(pos 1, ••• ,pos n)
PZONEC-)

Statement

pos Is a numeric expression between O and 255 which
designates printer tab positions.

PZONE setc; up default printer TAB positions for "LPRINT' (or
"PRINT#-3") "," modifiers. PZONE(") clears all printer stops. For
example, consider the following illustrative program and its associated
screen display.

PRINT"012345678901234567890123456789012345
FOR I= 1 TO 3
PRINT I,
NEXT
PRINT:PZONE(l0,15,30)
FOR I= 1 TO 4
PRINT I,
NEXT

012345678901234567890123456789012345
1 2 3
1 2 3 4

For additional printer paging statements, see "LINESPAGE",
"LMARGIN", "PAGELEN", and "RMARGIN".

219

BASIC Reference Manual

RANDOM RANDOM

This statement seeds the random number generator.

Compiler BASIC and Interpreter BASIC

RANDOM [exp) Statement

exp Is an optional integer expression in the
range <0-255> used to seed the generator.

RANDOM reseeds the "random" number generator to assure a high
probability of a non-repeating "random" sequence of numbers.

Compiler BASIC uses the well known and often used method of linear
congruential modulus to generate random numbers. To assure high
randomness and high non-repeatability, double precision variables are
used. This accounts for the relatively slow speed of the RND function.
However, 11llldQmness is ttemendously improved over Interpreter BASIC
RND. results.

The seed which is used wiU be a random number between <0-255> if no
operand is given; else it is seeded with the given operand. Specifying a
particular seed value will start the same sequence every time for any given
operand, which can be between O and about 2,400,000.

220

BASIC Statements and Functions

RDGOTO RDGOTO

This compiler BASIC statement allows you to reset the DATA list pointer.

Compiler BASIC

RDGOTOaddr Statement

addr Is either a line number or a label.

"DAT A" provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a "DATA" statement does
nothing as program execution jumps over the data list. The data list is read
into variables with the "READ" statement. "READ" normally reads data
starting from the beginning of the list.

"RESTORE" and RDGOTO provide ways to point at the desired data list.
"RDGOTO", especially, eliminates the wasteful process of reading and
discarding lists of data to get to the desired list required in interpretive
BASIC. Initially, the ftrst data item read, unless the data pointer is
changed by a RDGOTO statement, will be the first data item in the first
DAT A statement in the program.

Example Program:

5 RDGOTO "PRIME"
10 READ TITLE$:PRINT TITLE$:PRINT:READ N
20 FOR X=l TO N:READ A:?A,:NEXT
30 END
40 "FIB"
50 DATA The first EIGHT Fibonacci numbers in
order
60 DATA 8, 1,1,2,3,5,8,13,21
70 "PRIME"
80 DATA The first NINE prime numbers in
sequential order
90 DATA 9, 2,3,5,7,11,13,17,19,23

221

BASIC Reference Manual

READ READ

This statement allows you to declare and read a list of data items.

Compiler BASIC and Interpreter BASIC

READ varl [,var 2, ••• ,var n]

var Is either a numeric or string variable or
array element

Statement

DAT A provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a .. DATA" statement does
nothing as program execution jumps over the data list.

READ is the mechanism used to read from .. DATA" lists. "READ" has
the peculiar attribute that it can read a "DATA" item as either a string or a
number. An item can always be read into a string (as a string of
characters). An item can sometimes be read as a number - if it's a number.
READ.A$ reads the next "DATA" item (say 1.618033) literally, character
by character, into "A$"; in this case all eight-byte string. READ A, using
the same item, stores into "A" the binary equivalent of the converted
string 1.618033.

Initially, the first data item read, unless the data pointer is changed by a
"ROOOTO" or "RESTORE" statement, will be the first data item in the
first DATA statement in the program. "RESTORE" and ••RDGOTO"
provide ways to point at the desired dal:a lisL Note the following example
program:

10 READ TITLE$:PRINT TITLE$:PRINT:READ N
20 FOR X•l TO N:READ ~:?A,:NEXT
30 END
40 DATA The first 8 Fibonacci numbers in order
50 DATA 8, 1,1,2,3,5,8,13,21

222

BASIC Statements and Functions

REM REM

This statement is used to enter a remark into your source program.

Compiler BASIC and Interpreter BASIC

REM info or ' info Statement

REM, or the apostrophe character, signals the compiler to ignore the rest
of the source line. Nothing included on the line after a .. REMark"
statement is included in the compiled program.

Compiler BASIC requires that a colon precede the apostrophe if the
remark is part of a multiple statement. For example,

20 ILOOP0 (10, O, 1): 'Note 10 > 0

requires the":" to make the remark form a new statement.

223

BASIC Reference Manual

REPEAT- UNTIL REPEAT - UNTIL

These Compiler BASIC statements implement the typical REPEAT
UNI1L loop construcL

Compiler BASIC

REPEAT Statement C
statements
UNTIL exp Statement C

exp Is any numeric expression (usually boolean)

REPEAT ••• UNTIL is a looping construct found in some "structured"
languages such as PASCAL. As with "FOR •.• NEXT", unless unusual
programming techniques are used, the loop is unconditionally executed
one time. Compiler BASIC allows more than one "UNTIL" or "NEXT"
for a single "REPEAT" or "FOR"' statement, respectively. Runtime
program flow might (often does) variably choose a particular "UNTIL" or
"NEXT" to branch to, rendering compile-time selection impossible.

,r"

The "REPEAT" statement Oags a point to loop to when the next "UNTIL"
is encountered and its expression is non-zero. That is, a loop is made when
the expression following the "UNTIL" is boolean TRUE (non-zero).
Program execution resumes at the statement following "UNTIL exp" if
exp is equal to zero (the loop falls through.)

Example Program:

10 INPUT"Letter (A-Z) to stop for";S$
20 REPEAT
30 T~=CHR$(RND(26)+64)
40 PRINT T$,
50 UNTIL S$.,.T$

This prints a random letter until the qser-selected letter is encountered.

224

BASIC Statements and Functions

Programming Idea #1

There is a trick that may be used to defer eitecution or a loop even a single
time, with either "FOR ... NEXT" or "REPEAT ..• UNTIL". The trick
involves the use or the user-defined command mechanism, and goes as
such:

First a look at "FOR ..• NEXT". The required input variables are:

• The initial loop index variable value,
• the top limit, and
• the step size.

Clearly, some or these may be deferred if desired by setting some of them
to constants. Then, define a user-command Ii.lee so:

10 %LOOP0(0,10, .25): 'Will perform FOR TEST•O
TO 10 STEP .25
20 %LOOP0(10,0,1): 'Nothing will happen .
because 10 > O
30 END
50
100 COMMAND LOOPO(IVALUE,TOPLIM,INCR)
150
200 IF INCR<O
300 IF IVALUE>TOPLIM THEN RETURN
400 ELSE
500 IF IVALUE<TOPLIM THEN RETURN
600 ENDIF
650
700 FOR TEST - !VALUE TO TOPLIM STEP !NCR

NEXT

RETURN
ENDCOM

(Naturally, the line numbering is arbitrary - they could be any other
sequential allowable numbers). 200-600 prevents the loop from being
started at all if the initial index variable value falls outside of the specified
limit.

225

BASIC Reference Manual

Without a doubt you can see how to apply this idea to .. REPEAT-UNTIL"
loops. One idea: set up the user-command to accept a list of critical
variables used in the .. UNTIL" expression. Then, apply the pre-loop-check
to the .. UNTIL" expression. H zero, then "REfURN", otherwise, march
onwards. For example:

COMMAND LOOPl(A,B,C)
D =- 64
IF (A+B) > (C+D) THEN RETURN
REPEAT
PRINT A
A .,. A + B
UNTIL A> (C+D)
RETURN
ENDCOM

226

BASIC Statements and Functions

RESET RESET

This statement is used to turn off a pixel.

Compiler BASIC and DOS 5 Interpreter BASIC

RESET(x,y) Statement

x Is a numeric expression which evaluates to
the range <0 - 127> for 64-column screens
and <0 - 159> for SO-column screens.

y Is a numeric expression which evaluates to
the range <0- 47> for 16-row screens and
<0- 71> for 24-row screens.

SET, RESET, and COMPL form the set of the single-pixel-affecting
graphics commands. Note that screens that display 16 rows of 64
characters will display 72 rows by 160 columns of graphics pixels; screens
that display 24 rows of 80 characters will display 72 rows by 160 columns
of graphics pixels.

"SET" is a standard BASIC command that unconditionally turns on any
selected block graphic's pixel on the video screen. The "RESET'
command turns a pixel "OFF". The Compiler BASIC "COMPL"
command complements a selected graphic's pixel, turning it "ON" if it is
"OFF" and vice versa A function, "POINT(x,y)", is also related to the
pixel graphics commands.

227

BASIC Reference Manual

The following illustrates a brief example of these graphics commands:

5 Y=23:RANDOM:CLS
10 FOR X=O TO 127
20 SET(X,Y)
30 Y=Y+SGN(RND(J)-2)
40 IF Y<O THEN Y=O ELSE IF Y>47 THEN Y=47
50 NEXT
60 FOR X=O TO 127
70 COMPL(X,23):NEXT
80 FOR X=O TO 127
90 RESET(X,23) :NEXT

The program ftrst plots a "pseudo-mountainous" proftle on the screen,
proceeds to "complement" all graphics dots down the middle of the
screen, and finally resets all pixels through the middle of the screen.

228

BASIC Statements and Functions

RESTORE RESTORE

This statement allows you to reset the pointer of a data list.

Compiler BASIC and Interpreter BASIC

RESTORE
RESTORE [line]

StatementC
Statement I

DAT A provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statement does nothing
as program execution jumps over the data list. Initially, the first data item
read will be the first data item in the first DAT A statement in the program.

After some data items in the list have been read, the RESTORE statement
may be used to reset the list pointer to the beginning of the table. The
RESTORE command of Interpreter BASIC allows you to specify a line
number; the data pointer will be reset to the specified line, and any
subsequent READ statements will start from that line. This command must
be the first statement in a program line.

Compiler BASIC's "RDGOTO" can also be used to reposition the list
pointer to any line or labeled location of the data list RDGOTO line is
equivalent to RESTORE line.

Example Program:

5 RESTORE 80
10 READ TT$:PRINT TT$:PRINT:READ N
20 FOR X=l TO N:READ A:?A,:NEXT
30 END
50 DATA The first 8 Fibonacci numbers in order
60 DATA 8, 1,1,2,3,5,8,13,21
80 DATA The first NINE prime numbers in
sequential order
90 DATA 9, 2,3,5,7,11,13,17,19,23

229

BASIC Reference Manual

RESUME RESUME

This statement performs an unconditional program branch. It is used
primarily in an error-ttapping routine.

Compiler BASIC and Interpreter BASIC

RESUMEaddr
RESUME [Une]
RESUME NEXT

addr Is a line number or a label.

Une Is a BASIC program line number.

Statement
Statement I
Statement I

NEXT Implies the Interpreter BASIC line number
following the statement where the error occurred.

RESUME is used in an "ON ERROR GOTO" error handling routine and
provides the mtans to continue running the program after the error has
been handled.

Under Interpreter BASIC, omitting the line operand is equivalent to
"RFSUMB O". This will cause a return to the statement in which the error
occurred. A "RESUME line" will cause a return to the statement with the
specified line number. Finally, A "RESUME NEXT" returns to the line
number following the statement where the error occurred.

Compiler BASIC does not support a "RESUME NEXT'. You can
"RESUME addr", where addr is at a highest program level (i.e. not
contained in a GOSUB'd subroutine or program loop). "RFSUME" resets
the program stack pointer to its initial value, normalizes the program code
pointer, then performs a "0010".

230

BASIC Statements and Functions

RETURN RETURN

This statement is used to return from a GOSUBed subroutine.

RETURN

Compiler BASIC and Interpreter BASIC

Statement

GOSUB is the standard BASIC command to call a subroutine. Nested
"GOSUB., calls are limited only by available free stack memory.

RETURN returns from a subroutine to the next instruction following the
"GOSUB" invocation. Note the use of the Compiler BASIC "POP"
command documented elsewhere.

10 DIM A(l0),B(l0) :' Compiler array~ must be
dimensioned
20 FOR X=0 TO 10:A(X) - RND(X):

B(X)=RND(0):?A(X),B(X) :NEXT
30 GOSUB"SORTA":' Could be GOSUB 110
40 GOSUB"PRINTA":'Could be GOSUB 140
50 GOSUB"SORTB":' Could be GOSUB 130
60 GOSUB"PRINTB":'Could be GOSUB 110
70 END
80
100 "SORTA":' Alternatively: JNAME"SORT A"
110 SCLEAR:KEY A(0):TAG B(O) :SORT 11:RETURN
120 "SORTB"
130 SCLEAR:KEY B(0) :TAG A(0) :SORT 11:RETURN
140 "PRINTA"
150 FOR X=0 TO 10: PRINT A(X),B(X) :NEXT:RETURN
160 "PRINTS"
170 FOR X=O TO 10: PRINT B(X),A(X) :NEXT:RETURN

This program loads arrays AO and BO with random numbers and then
proceeds to sort them individually, first on AO with BO elements "lagging
along", then on BO with AO as a TAG.

231

BASIC Reference Manual

RIGHT RIGHT

This compiler BASIC statement is used to scroll the video screen right one
column.

Compiler BASIC

RIGHT Statement

RIGHT scrolls the entire screen right by one character, clearing the
leftmost (0th) screen column.

232

BASIC Statements and Functions

RIGHT$ RIGHT$

This function extracts the right-hand sub-string of a string.

Compiler and Interpreter BASIC

RIGHT$(exp$,exp 1)

exp$ Is any string expression.

Function

exp 1 Is the number of rightmost characters to obtain 'from
the string.

RIGHT$ takes a substring away from the right For example:

RIGHT$("ABCDEF",3) =- "DEF"

RIGHT$("NE PLUS ULTRA",10) = "PLUS ULTRA"

Note that "MID$" can easily simulate "RIGIIT$". For example:

RIGHT$(exp$,exp)
is equivalent to MID$(exp$,len(exp$)-exp+ 1)

assuming "len(exp$) >= exp". _

233

BASIC Reference Manual

RMARGIN RMARGIN

This compiler BASIC statement is used to set the printer's right hand
margin.

Compiler BASIC

RMARGIN • exp Statement

exp Is a numeric expression which evaluates to the
range <0-255>; 0 implies no margin checking.

This statement sets the right hand margin on your printed page. An
automatic carriage return done when the number of characters printed is
equal to the value specified as exp.

The RMARGIN statement allows an .. RMARGIN=O" which results in the
total suppression of left-margin indents, "PAGELEN" checking, as well
as right-margin checking. This provides the capability of generating
printer controls,without Compiler BASIC adding any page formatting.

For additional printer paging statements, see "LINESPAGE",
''LMARGIN", "PAGFLEN", and "Y.lONE".

234

BASIC Statements and Functions

AND RND

This function obtains a random number.

Compiler and Interpreter BASIC

RND(exp) Function

exp Is a numeric expression.

RND returns a pseudo-random number between O and 0.999999 if exp is
equal to zero; otherwise it returns an integer between .. 1,. and exp. Note
that n sequence of numbers produced by the above function is not truly
random.

The "RANDOM" statement can be used to reseed the random number
generator, further increasing randomness (or initiating a predetermined
sequence for repeatable conditions).

Interpreter BASIC performs its random number generator calculations in
single precision.

All calculations in Compiler BASIC are done in double precision to assure
high randomness and a very long repeat cycle (which will occur
eventually). The method of linear congruence is used, as described by
Knuth in the second volume of his .. The Art of Computer Programming";
this method fulfills all the usual tests of randomness while retaining
simplicity of calculation.

235

BASIC Reference Manual

ROT ROT

This compiler BASIC statement is used to establish a rotation for the
"DRAW" statement.

Compiler BASIC

ROT•exp8 Statement

exp8 Is a numeric expression which evaluates to
the range (0-255) signifying DRAW degrees.

This statement will set the rotation offset for "DRAW" statements. The
direction is stepped in units of 256/360 degrees counter clockwise with
"up" being 0. The following program draws a figure, using "DRAW", then
rotates the figure about the plot origin.

10 DEFINT F:CLS:DIM FIGUREl(llO)
20 YaO:FOR X=O TO 250 STEP 10
40 FIGUREl(Y)=X*6:'Line length• 6*X/256 units
50 FIGURE1(Y+l)-X+256:'Rot - X, entry code= 1
55 Y=-Y+2
60 NEXT:' Continue until figure completed
70 FIGUREl(Y+l)•0:'0 entry to terminate list
75 'Draw it!

FOR I• 0 TO 255 STEP 16:ROT=I:'Rotate figure
80 DRAW SET @64,23 USING FIGUREl(O)

DRAW RESET @64,23 USING FIGUREl(O)
NEXT l:A$•WINKEY$

Drawing begins at location (64,23) and the object is SET on the screen as
per the DRAW flag .. SET". To demonstrate the rotation available with
"ROT', the figure is reset immediately after being drawn.

236

BASIC Statements and Functions

ROW ROW

This function obtains the current row position of the cursor.

Compiler BASIC and Interpreter BASIC

ROW(dummy exp) Function

dummy exp Is a required expression which is ignored.

ROW returns the row of the cursor; equal to "INT((CURLOC)/{number of
columns)". For example.

10 PRINT@l70,"Hi."
20 A=- ROW(0)

assigns a 3 lo "A ...

237

BASIC Reference Manual

RSET RSET

The RSET command will allow you to place infonnation into the buff er
associated with a disk file, prior to writing this infonnation out to the disk.
It is used primarily in conjunction with random files.

Compiler BASIC and Interpreter BASIC

RSET var$ = exp$ Statement

var$ Is the variable used in the field statement that points
to the buffer location where the data is to be placed.

exp$ Is the infonnation to add; it must be a string constant
or string expression.

The RSET command functions identically to the "LSET' command, with
the following exception. Rather than the information being placed into the
buffer left-justified, "RSET' will place the infonnation into the buff er
right justified . . lf the length of the string to be placed into the buff er is
less than the fielded length of the particular slot of the buffer, spaces will
be inserted in front of· the string in the buffer to make the string in the
buffer the same length as specified in the field statement

If the length of the string to be "RSET' into the buff er is greater than the
fielded length, the right most part of the string will be placed in the buffer,
and any characters to the left of the total allocated space will be truncated
(i.e. the information is "right justifiedj.

The main difference between "MID$" and "LSET' or "RSET' is that the
latter commands fill the remaining characters in the affected string with
blanks, or CHR$(32)'s. Note that "LSET' and "RSET' commands work
on any string variable, not just FIELDed string variables.

Examples (in all examples AS is 10 chars long):

RSET A$=•12345678912. Now A.$="2345678912"
RSET A$=•HELLO" AS=" HELLO"

238

BASIC Statements and Functions

RUN RUN

Compiler BASIC's "RUN" will load a "/CMD" type program from disk
and then invoke it. Interpreter BASIC's "RUN" command will allow you
to load a BASIC program stored on disk into the computer's memory, and
immediately begin execution of that program.

Compiler BASIC and Interpreter BASIC

RUN ["filespec$"J I [line]
RUN ["filespec$"]lRJ
RUN ["filespec$"][,RIVJ[,Hne]

Statement C
Statement 16
Statement 15

filespec$ Designates the file to run.

R Is used with Interpreter BASIC to leave open all
currently open files prior to runningfilespec$.

V Is used to leave open all currently open files prior to
runningfilespec$ as well as retain all variables
[similar to "CHAIN filespec$,ALL'1.

line Will re-run the current program at line, line.

Interpreter BASIC RUN

The RUN command may be issued from the BASIC Ready prompt to load
and execute a program, or may be used from within a BASIC program to
perfonn a chaining of programs. If the RUN command is given with a
filespec$, any program which is currently resident in memory will be
overwritten, and the program specified in the RUN command will be
loaded and executed. Filespec$ is the name of the program that you wish
to be loaded and executed, and may be represented by any valid DOS
filespec; it may be either a string constant or a string expression. If
filespec$ is not included, the program currently in memory will be
executed.

239

BASIC Reference Manual

If the RUN command is given with just a filespec$ (i.e. no additional
parameters are specified), no variables will be retained, and any open files
will be closed.

If the Interpreter BASIC "RUN" command is given with the line number
parameter, the program specified will be loaded, and execution will begin
at the line specified. Realize that the line number specified must be an
existing line number, or an Undefined fine number error will be generated.
Also, it must be represented as a numeric constant. If a line number is not
specified, execution will begin with the first line number of the program.

The "RJV" parameters are optional, and are used primarily when BASIC
programs are to be "chained" together. One of two different parameters
are available. Either "R" or "V" may be specified, but not both. If used,
they must be represented as a letter ("R" or "V"), and cannot appear
within quote marks, or be represented by a string expression.

If the RUN command is given with the "R" parameter, all variables will
be lost, but any files which were opened will remain open, and will utilize
the same buffer number. Realize that if the "R" parameter is used, any
open files must be re-fielded.

If the RUN command is given with the "V'' parameter, any established
variables will be maintained, and all open files will remain open. There
are several points to be considered when using the "V" parameter. In
addition to all files remaining open, the fielding of the buff er associated
with the open file will remain intact. Hence, re-fielding is not required.
Any DEFinition statements (such as "DEFINT" and "DEFSTR") must be
re-established in the program to be chained. The "CLEAR" command
should not be encountered in the program to be chained, as execution of a
"CLEAR" statement will close all open files and destroy any established
variables.

It should be obvious that if the program to be chained is longer than the
calling program, or uses more variables than the calling program, an Out of
memory or Out of string space error may occur. To utilize this feature to its
fullest capabilities, forethought must go into the determination of variable
names to be carried over from one program to another.

The "RJV" and "line number" parameters may be specified individually, or
they may appear together in the RUN command. If both parameters are

240

BASIC Statements and Functions

specified, the "RIV" parameter must physically come before the line
number parameter.

Suppose you have a BASIC program named MYPROG/BAS, and this
program has been saved onto a disk which is currently in drive :1. One of
the following commands may be given to load and execute the above
program.

RUN"MYPROG/BAS: 1 •
A$="MYPROG/BAS: 1 ":RUN A$

After either of the above commands are executed, any program currently
in memory will be overwritten, and the program MYPROG/BAS will be
loaded and executed. Any open files will be closed, and any established
variables will be destroyed.

Suppose you wish to load and execute the program MYPROG/BAS as
described in the above example, except that you wish execution to begin at
line 3000 in the program. The following command will cause the program
to be loaded, and execution will begin at line 3000. ·

RUN"MYPROG/BAS: 1 ",3000

This example wilt illustrate how lo use the "V" parameter of the RUN
command to maintain variables between chained programs. Listed below
will be two programs that reference each other (PROGi/BAS and
PROG2/BAS). The sequence will be started by issuing the command
RUN"PROG 1 /BAS". Both programs must have been saved on disk prior
to trying to execute either.

5 'PROGl/BAS
10 CLEAR 2000
20 DEFINT A-Z:DEFSTR S
30 IF A=0 THEN S="PROGl/BAS"
40 CLS
50 A=A+S
60 PRINT"This is ";S,"A=";A
70 IF A>l00 THEN END
80 S="PROG2/BAS"
90 INPUT"Press <ENTER> to run PROG2/BAS";S1
100 RUN"PROG2/BAS",V,20

241

BASIC Reference Manual

5 'PROG2/BAS
10 CLEAR 2000
20 DEFINT A-Z:DEFSTR S
30 CLS
40 A=A+3
50 PRINT"This is ";S,"A=";A
60 S="PROGl/BAS"
70 INPUT"Press <ENTER> to run PROGl/BAS";S1
80 RUN"PROGl/BAS",V,20

Notice that in each of the .. RUN" commands, line number 20 was
specified. This accomplishes two things. It causes execution to start at line
20 of each program, which will cause the "CLEAR" command in both
programs to be bypassed. Also, line 20 must be executed, as all DEF-type
statements must be re-established when programs are chained using the
"V" parameter. Although this is a very simplistic example, it should
illustrate some of the steps needed to perform program chaining while
retaining variable assignments. If both the .. V" parameter and a line
number are used, the "V" parameter must come before the line number.

Compiler BASIC RUN

RUN loads and-runs a machine language program (executable CMD file)
from disk. It can be any executable program including another compiled
program. The .. RUN" statement also supports additional variations beyond
RUN"fdespec". For example, the statement,

RUN

will restart your program without causing it to load. All open files will be
first closed. All variables will be cleared. The statement,

RUN exp

will restart your program at the line identified by exp. All variables will be
cleared. All open mes will be closed. This is similar to interpretive
BASIC's, "RUN nnnn". Of course, if the syntax used is, "RUN exp$.. ,
then exp$ is assumed to be a file specification. You cannot "RUN" at a
labeled statement as there can be no differentiation between a labeled
statement string and a filespec string.

242

BASIC Statements and Functions

SCALE SCALE

This compiler BASIC statement is used to establish a scaling factor for the
"ORA W" statement.

Compiler BASIC

SCALE= exp16 Statement

exp16 Is a numeric expression which evaluates to
the range (-32768 to 32767)

This command sets the scaling factor for ORA W commands. The scaling
factor is measured in units or tn56. Thus, a "SCALE = 256" is equal to a
1:1 size plot. A "SCALE = 128" would be half sized. Here's a
modification of the "ORA W" illustrating a rotating figure drawn at four
different scales.

10 DEFINT F:CLS:DIM FIGUREl(llO)
20 Y=O:FOR X=O TO 250 STEP 10
40 FIGURE1(Y)=X*6:'Line length= 6*X/256 units
so FIGURE1(Y+l)=X+256:'Rot = x, entry code• 1
55 Y=Y+2
60 NEXT:' Continue until figure completed
70 FIGUREl(Y+l)=0:'0 entry to terminate list
75 'Draw it!

FOR I= 0 TO 255 STEP 16:ROT=I:'Rotate figure
FOR J = 4 TO 1 STEP -1
SCALE= 64*J: 'Scale figure

80 DRAW SET @64,23 USING FIGUREl(O)
DRAW RESET @64,23 USING FIGUREl(O)
NEXT J:NEXT I
PRINT@80*11+30,"That's all folks":A$=WINKEY$

243

BASlC Reference Manual

SET SET

This statement is used to turn on a pixel.

Compiler BASIC and DOS 5 Interpreter BASIC

SEJ(x,y) Statement

x Is a numeric expression which evaluates to
the range <O - 127> for 64-column screens
and <O - 159> for 80-column screens.

y Is a numeric expression which evaluates to
the range <0 - 4 7> for 16-row screens and
<0 - 71> for 24-row screens.

SET, RESET, and COMPL form the set of the single-pixel-affecting
graphics' coml!IJDds. A function, "POINT(x,y)", is also related to the
pixel graphics cpnmands. Note that screens that display 16 rows of 64
characters will \l:(lisplay 72 rows by 160 columns of graphic's pixels;
screens that display 24 rows of 80 characters will display 72 rows by 160
columns of graphic's pixels.

The following illustrates a brief example of these graphics commands:

5 Ys23:RANDOM:CLS
10 FOR X=O ~O 127:SET(X,Y)
30 Y=Y+SGNO'lliD(3)-2)
40 IF Y<O ThEN Y=O ELSE IF Y>47 THEN Y=47
50 NEXT
60 FOR X=O TO 127:COMPL(X,23) :NEXT
80 FOR X=O TO 127:RESET(X,23) :NEXT

The program fust plots a "pseudo-mountainous" profile on the screen,
proceeds to "complement" all graphics dots down the middle of the
screen, and finally resets all pixels through the middle of the screen.

244

BASIC Statements and Functions

SETEOF SETEOF

The SET EOF command may be used to "shrink" the amount of space
taken up by a file by truncating it, and thus free-up additional disk space.
The syntax for the SET EOF command is:

SET EOFbufnum
o/oSETEOF(bufnum)

Statement 15
Statement C

bufnum Represents the buff er number used to open the file
in question, and can be e:itpressed as an integer
constant or an integer e:itpression.

The SET EOF command is used primarily in conjunction with random
files. In some applications, a random file may contain unwanted records at
the end of the file. The "SET EOF" command will f umish you witlfa way
to eliminate these unwanted records. The function it perfonns is to reset
the end of file marker for the file in question to a value less than the
current end of file marker. This will cause all records whose record
numbers are greater than the new end of file marker value to be ignored,
and thus make these records inaccessible. Also, the space taken up on the
disk by these "eliminated" records will be added to the free space
available, and thus may be reused.

To use the "SET EOF" command, you must open the file in question as a
random file (i.e. type "R"). It is highly recommended that the record
length used to open the file be the same as the record length used for
nonnal access to the file.

After the file has been opened, perform a "GET" of the record you wish to
be the last record in the file. You may_then use the "SET EOF' command
to reset the end of file marker to the current record number, and thus
eliminate all unwanted records (by doing a "GET', the current record
number will be changed to die value of the record which was retrieved).

Suppose you have a random file named XTRNDAT which currently
contains I 00 records, and you wish to eliminate the last 50 records of the

245

BASIC Reference Manual

file (records 51-100). Assume also that the file has been opened in the
random mode, using buffer number 3. The following commands may be
used to accomplish this "file shrinkage".

GET3,50:SET EOF3

Be extremely careful when using the SET EOF command. Once
records have been eliminated from a file using this command,
they might not be recoverable! It is beyond the scope of this
manual to discuss techniques used to recover lost information in a
file. The best prevention for such an occurrence is caution!

Compiler BASIC does not directly support "SET EOF"; however, the
"COMMAND" facility may be used to create a .. %SETEOF'' command;
this is demonstrated following the detailed example.

Here's a more detailed example program illustrating an easy user
command designed to set the "EOF'' of a random access file. The
random file is positioned lo the last record desired by means of a "GET"
on that record. Then the "SETEOF" [of course coded as
o/oSETEOF(bufnum) since Compiler BASIC requires the "%"
character lo indicate a user command] will set the "EOF" pointers to
the current rectld pointers.

ALLOCATE 1: 'Allocate one file buffer space
OPEN "R",l,"testfile/dat",32
FIELD 1,32 AS ARG$
FOR I• 1 TO 20
LSET ARG$•"This is test "+STR$(I)
PUT l,I: NEXT
CLOSE 1
SYSTEM"List testfile/dat (hex)"
OPEN "r",l,"TESTFILE/DAT",32
FIELD 1,32 AS ARG$
GET 1,10: PRINT ARG$
\SETEOF(l): 'Set the end of file
CLOSE 1
END"list testfile/dat (hex)"
*INCLUDE SETEOF/BAS

246

BASIC Statements and Functions

The %SETEOF(bufnum) command code is not an integral part of
Compiler BASIC; it can be written to a file named .. SETEOF/BAS". This
file must be included with your program in order to be able to use the
command. Here's the code:

COMMAND SETEOF(BUFNUM%)
IF NOT EOF(BUFNUM%)
Z80-MODE
LO HL, (&(BUFNUM%)) :CALL @CALADR
LO A, (IX+16+5) :LO (IX+16+8),A
LO A, (IX+16+10) :LD (IX+16+12),A
LO A, (IX+l6+11) :LD (IX+16+13),A
HIGH-MODE
ENDIF
RETURN
ENDCOM

If yon care to examine that file, you will see that it consists, in part, of a
280-MODE routine. "@CALADR" is a routine from the Compiler
BASIC SUPPORT/DAT library which calculates the address of a
bufnum's file buffer allocation and returns the value in register IX. To
be fancy about it, the CF would be set on return from @CALADR if the
buf num referenced a file which was not already open. Of course, under
that case, nothing damaging would result as the accessing of the FCB
region would be or unused memory addresses. Make note that if the
buf num exceeds the value established by ALLOCATE (the maximum
number of open files), @CALADR would report a runtime error 104.

247

BASIC Reference Manual

SGN SGN

This function obtains the sign of its argument.

Compiler BASIC and Interpreter BASIC

SGN(exp) Function

exp Is a numeric expression.

The SGN function will return -1, 0, or + 1 depending on the state of its
argument.

248

SGN(exp) = -1 if exp< 0

SGN(exp) = 0 if exp=O

SGN(exp) = 1 if exp> 0

BASIC Statements and Functions

SIN SIN

This function obtains the trigonometric sine of its argument.

Complier BASIC and Interpreter BASIC

SIN(exp) Function

exp Is a numeric expression in radian measure.

SIN truces the sine, in radians, of an expression. Interpreter BASIC returns
a single precision value; Compiler BASIC returns, in full precision, a
value of the same type as exp. Thus, if the argument is a double precision
type, the value returned is in double precision with full significance.

249

BASIC Reference Manual

SORT, SCLEAR, KEY, TAG

These compiler BASIC statements are associated with the built-in array
sorL

Compiler BASIC

SORT ((flag),] num
SCLEAR

Statement
Statement
Statement
Statement

KEY array(exp)
TAG array(exp)

array(exp) Is an array element which designates the key
array for sorting purposes and the tag array
for sorting purposes.

Is an integer numeric operand in the range
(I to 32767) which designates the number of
elements to sort.

Is a numeric expression, either 0 or l, to specify
ascending or descending sort, respectively. If
flag is omitted, SORT defaults to ascending.

The SORT statement provides an easy but relatively fast way to sort
single dimension (such as A(lOO), not A(40,20)) arrays using up to 32
keys and 32 "tags". "SCLBAR" is an important "SORT" initialization
command which must precede your sorting specification commands.

A one-key sort is straightforward. The keyed array is sorted, either in the
default (no Dag specified) ascending order, or in "(0ag=l)" descending
order. The sort time is variable, depending on the sort data and its
organization, but a typical sort time for 1000 strings is IS seconds.

TAGs are arrays which "tag" along with their associated keys and play no
part in SORTmg. If A(0)=S, A(1)=2, and B(0)=l and B(1)=2, then if a
single key sort on A(O) .•• A(l) were done with B(0) ... B(l) as a tag, then

250

BASIC Statements and Functions

the final result would be: A(0)=2, A(1)=5, B(0)=2, B(l)=l. Array element
B(O) was "linked" to A(O) and B(l) to A(l) in the sort.

Multi-key sorts are also pretty straightforward. If identical entries are
encountered in the current-level key, then the next-level-keyed array is
sorted on, unless there are no more keys. Important: The last array
KEYed is the most significant ("primary level"). The first array KEYed
is the least significant. Arrays are KEYed in least to most significant
order.

Uthe entries are not identical in the current-level key, then all lower-level
KEYed arrays are TAGged.

Multi-key sorting is demonstrated with the following sample sort data:

A(O) = 2
A(l) = 4
A(2) = 3
A(3) = 2
A(4) = 3
A(5) = 1

B(O) = 3
B(I) = 6
B(2) = 7
B(3) = 7
B(4) = 5
B(5) = 3

Assuming that these values have been assigned, then the following:

SCLEAR:KEY B(0),A(0):SORT 6

performs the desired sort. The arrays are then:

A(O) = 1
A(l) = 2
A(2) = 2
A(3)= 3
A(4)= 3
A(5)=4

B(O)= 3
B(l) = 3
B(2) = 7
B(3) = 5
B(4) = 7
B(5) = 6

As you can observe, array "B" is not in directly sorted order. It is only
within "subfields" of "A", where the array elements are the same, such as
A(l) and A(2), and A(3) and A(4), that B's element are internally sorted;
B(l) and B(2), and B(3) and B(4). In all cases, array B "tagged" along
with array "A". The only real distinction between "TAG" and "KEY" is

251

BASIC Reference Manual

that a TAGged array will appear in arbitrary order within primary key
"subfields".

The compiler "SORT" facility allows you to specify the first element of
the array for sorting to be at any point in the array. This is done implicitly
when an array is KEY ed or TAGged for sorting.

Example Program:

10 CLEAR 1000:DIM A$(20)
20 FOR X=O TO 20
30 FOR Y=l TO RND(5)
40 A$(X)=A$(X)+CHR$(RND(26)+64)
50 NEXT Y:PRINT A$(X),:NEXT X
55 PRINT:PRINT
60 SCLEAR:KEY A$(0) :SORT 21
70 FOR X=O TO 20:?A$(X),:NEXT

This simple program generates and prints 21 random (1-5 character) length
strings. sorts them, and prilfts out the sorted IisL

BASIC Statements and Functions

SOUND SOUND

This statement generates a sound using a DOS service call, when
available. Its syntax is:

DOS 6 Compiler BASIC and DOS 6 BASIC

SOUND tone,durafion
o/oSOUND(tone,duration)

Statement6
StatementC

tone Is a number specifying the tone in the range <0-7>

duration Is the duration of the tone entered as an integer in
the range <0-31>.

The SOUND command generates a tone from the computer's speaker
(tone board). It relics on the SOUND support available from DOS. Tone
varies in frequency with "0" representing the lowest and "T' representing
the highest The duration can range from the shortest ("0 ") to the longest
("31 "). SOUND is best used as an alert tone for calling attention to an
error encountered or a required entry while running a program.

Compiler BASIC does not internally support any "SOUND" statement
On the other hand, a little "COMMAND" addition in 280-MODE should
allow you to adapt that Russian Roulette program very easily. Here's a
little code which adds a SOUND statement and demonstrates its use:

DEFINT A-Z
FOR D=0 TO 4
FORT= 0 TO 7
%SOUND(T,D)
NEXT T,D
STOP
*INCLUDE SOUND/BAS

You would need to include the file named 11SOUND/BAS" which
contains the code necessary to generate the sounds. It uses the DOS
@SOUND supervisor call. A statement such as the fourth line will beep

253

BASIC Reference Manual

the requested sound. Although this syntax "SOUND(tone,duration)"
is a little different from "SOUND tone,duration" in DOS 6
Interpreter BASIC, it's a straightforward conversion.

Here's the SOUND/BAS code which is a Z80-MODE routine. This is
another example of the ease in which an assembly language routine
can be integrated into your BASIC programs without USR, CALL, or
packed strings.

COMMAND SOUND(TONE,DUR)
Z80-MODE
LD A, (&(TONE)):AND 7:LD B,A
LD A,7:SUB B:LD B,A
LD A, (&(DUR)):AND 31
RLCA:RLCA:RLCA:OR B:LD B,A
LD A,104:RST 40:RET
HIGH-MODE
ENDCOM

254

BASIC Statements and Functions

SPACE$ SPACE$

This DOS 6 Interpreter BASIC function returns a string of "SPACE"
characters. It's syntax is:

DOS 6 Interpreter BASIC

SPACE$(number) Function

number The quantity of spaces desired in the range <0-255>.

The SPACE$ function returns a string filled with as many spaces as the
operand, number. It is primarily useful in "PRINT" statements, or in
initializing string variables to SPACE characters, CHR$(32).

10 A$~ SPACE$(30)
20 PRINT A$;"This prints at column 30"

The above program assigns a string of 30 SPACE characters to the
variable "A$", then prints the message starting at column 30 (relative to
column 0).

255

BASIC Reference Manual

SPC SPC

This DOS 6 Interpreter BASIC function prints a string of SPACE
characters. Its syntax is:

DOS 6 Interpreter BASIC

SPC(number) Function

number The quantity of spaces desired in the range <0-255>.

SPC is similar to "SPACE$"; however, it can be used only with the
"PRINT', "LPRINT," or "PRINT#" statements, and it uses no siring
space.

10 PRINT SPC(30)"This prints at column 30"
20 PRINT SPC(30);"This also prints at column 30"
30 PRINT SPC(30),"But this does not!"

Omitting ti terminating character after the closing parenthesis is the same
as terminating the function with a semi-colon. Using a comma terminator
positions the next printed character at the tab-stop following the spacing.

256

BASIC Statements and Functions

SQR SQR

This function obtains the square root of its argument.

Compiler BASIC and Interpreter BASIC

SQR(exp) Function

exp Is a numeric expression.

SQR returns the square root of a non-negative expression (negative square
roots are undefined in real (e.g. BASIC) numbers.) For example, SQR(4) =
2, since 2 "'2 = 4, and SQR(81) = 9, since 9 • 9 = 81. Usually the result is
not a neat integer, as with SQR(7) (= approximately. 2.64575).

Interpreter BASIC returns a single precision result; in compiler BASIC, a
double precision expression will cause a double precision square root lobe
returned, accurate to at least 16 decimal digits.

"SQR(A)" will return an Illegal function call error if" A" is negative.

1 ON BREAK GOTO 100: ON ERROR GOTO 200
2 PRINT"<BREAK> transfers to square root"
3 PRINT"where <BREAK> terminates program."
10 INPUT "A";A
20 INPUT "B";B
30 C==A"B
70 PRINT"A"B=";C
80 PRINT:PRINT
90 GOTO 1
100 ON BREAK GOTO 0
110 INPUT"Enter Z (<BREAK> terminates)";Z
120 Y==SQR(Z)
130 PRINT "SQUARE ROOT OF Z --";Y
140 PRINT:PRINT
150 GOTO 1
200 PRINT "Error ";ERR;" in line ";ERL:RESUME 2

257

BASIC Reference Manual

STOP STOP

This statement is used to terminate your program with a message and then
return to DOS.

Compiler BASIC and Interpreter BASIC

STOP Statement

STOP in Interpreter BASIC will cease the execution of the running
program and print the message, BREAK IN line, where line is the line
number where the .. STOP" occurred. While the program is stopped, you
may examine the values of variables or change their contents; you cannot
edit any lines or the program's variables will be cleared. The "CONT'
statement may be used to resume execution.

STOP in Compiler BASIC causes a transfer back to DOS via the @EXIT
address similar to "END". The distinction between "END" and "STOP" is
that the latter prints "-STOP-" <CR> and the current source line number
(if available) before BNDing the program.

258

BASIC Statements and Functions

STA$ STA$

This function converts a numeric expression to an ASCII decimal string.

Compiler BASIC and Interpreter BASIC

STR$ (exp) Function

exp Is any numeric expression.

STR$ is used to expand a binary number into its ASCII decimal
equivalent. For example:

STR$(1.2+4.5)=" 5.7"

Notice the leading blank appearing in the string. The converted strings of
all non-negative expressions will have such a leading blank. Negative
expressions have a minus sign,"-", instead of a space.

259

BASIC Reference Manual

STRING$ STRING$

This function generates a repeated character string.

Compiler BASIC and Interpreter BASIC

STRING$ (exp 1,exp2)
STRING$(exp 1,"char")

Is equal to the desired string length.

Function
Function

expl

exp2 Is equal to a character code in the range <0-255>.

Is a single character.

STRING$ is a convenient way to make long strings of the same selected
character. For example:

STRING$(10,45) == "----------"
STRING$(5,".") = " •••• :

260

BASIC Statements and Functions

SWAP SWAP

SWAP is a BASIC statement used to exchange the contents of two
similarly typed variables.

Complier BASIC and DOS 6 Interpreter BASIC

SWAP varl ,var2 Statement

var Is any variable.

SW AP exchanges the values of two variables of the same type. If
A$="FIRST" and 8$:::"SECOND" then SWAP A$,B$ leaves "A$" with
"SECOND" and "8$" with "FIRST".

261

BASIC Reference Manual

SYSTEM SYSTEM

This statement is used to invoke a DOS command from within a program
and then return to your program when the DOS command completes. It is
used under DOS 5 Interpreter BASIC to load from cassette tape, or
transfer control to, machine language programs.

Compiler BASIC and Interpreter BASIC

SYSTEM •command"tvar$
SYSTEM rcommand"lvar$]
SYSTEM
CMD ·command"tvar$

Statement C
Statement 16
Statement 15
Statement 15

command Is the string to pass to DOS for execution;
if omitted under DOS 6 Interpreter BASIC, the
program will stop and control is returned to DOS.

var$ Contains the command string.

Under DOS 6 Interpreter BASIC and Compiler BASIC, SYSTEM will
pass the command string identified as the parameter to the DOS command
interpreter. Upon completion of the command, control will be returned to
the running program. Under DOS 5 Interpreter BASIC, the equivalent
operation is invoked with the CMD"commancr statement.

Under Interpreter BASIC, omitting the parameter will exit the program
and return back to DOS. If you use the command parameter, the command
string is restricted to reference DOS library commands only. Actually, the
restriction is that the command invoked must not utilize any memory
outside of the DOS library region (2400H-2FFFH). If you have specific
knowledge that a non-library command supports this restriction, you may
invoke it using the DOS's "RUN" command; i.e. SVSTEM"RUN
MYPROG•. The Interpreter BASIC BASIC/OVl ftle must be available to
enable use of "SYSTEM".

Compiler BASIC has no restriction on invoking any command, short of
commands which can alter the high-memory pointer.

262

BASIC Statements and Functions

The following DOS 6 Interpreter BASIC example illustrates the use of
SYSTEM"RUN command ••• " to sort arrays using a BSORT utility.

10 OPTION BASE O:DIM A$(6),F$(6)
20 FOR I=l TO 6:READ A$(!) :NEXT
30 FOR I=l TO 6:READ F$(I) :NEXT
40 SYSTEM"RUN BSORT 6,A$(1),+F$"
50 FOR I=l TO 6
60 PRINT A$(I),F$(I)
70 NEXT
80 END
90 DATA SMITH,JONES,JONES,WILLIAMS,JOHNSON,JONES
100 DATA SAMMY,BILLY,BETTY,RICHARD,CHARLES,BOBBY

Under DOS 5 Interpreter BASIC, you use SYSTEM to load and/or execute
a machine language program from cassette tape. After typing SYSTEM
<ENTER>, you will receive a question mark prompt. Enter the name of the
tape file you wish to load followed by <ENTER>. After the file is
successfully loaded, another question mark will be displayed. Bxecution
can be started at the default address stored with the program by typing a
slash, "f' followed by <ENTER>.

You may begin execution at any address by typing a slash followed by the
memory address to begin execution.

Note that to access cassette tapes, you must disable interrupts fi.rst (see
CMD"T" and CMD"R". Note also that most system tapes will overlay the
DOS and cannot be utilized while running DISK BASIC (see "CMDFll.E"
in your DOS manual).

263

BASIC Reference Manual

SZONE SZONE

This compiler BASIC statement is used to set the video screen print zones.

Compiler BASIC

SZONE(pos 1, ... ,pos n)
SZONE(•)

Statement

pos Is a numeric expression between <0 and 63>
which designates screen tab positions.

SZONE sets up default TAB positions for the "," modifier in "PRINT"
statements and (equivalently) "TAB(255)" statements. Any screen print
zone established remains until all are cleared; thus, the "SZONE"
statement may be repeatedly invoked to establish more than one zone, or
more than one screen tab position may be passed as operands of the
statement SZONE(•) clears all print stops. See the program below for an
example "SZONE" usage, as well as "P'ZONE" for similar use with line
printer "lPRINT" zones.

10 SZONE(*): 'Clear all tab stops
12
15 'Set up TAB stops in multiples of 8 spaces
17
20 FOR X=0 TO 63 STEP 8:SZONE(X) :NEXT
30 FOR X=O TO 30:PRINT x,:NEXT:' Could be
PRINT X TAB(255) ..•

Once line 20 sets up stops, line 30 sample prints O through 30 showing the
new tab stop intervals.

264

BASIC Statements and Functions

TAN TAN

This function obtains the trigonometric Ian gent of its argument.

Compiler BASIC and Interpreter BASIC

TAN(exp) Function

exp Is a numeric expression in radian measure.

TAN returns the radian degree tangent of an expression, mathematically
equivalent to "SIN(exp)/COS(exp)". Interpreter BASIC returns a single
precision value. Compiler BASIC will return a double precision value if
the given expression is double precision.

265

BASIC Reference Manual

TIME$ TIME$

The TIME$ function will retrieve the current system time (and date for
DOS 5 Interpreter BASIC) as a string. The syntax for the "TIME.$"
command is:

Compiler BASIC and Interpreter BASIC

TIME$ There is no operand Function

Under DOS 6 Interpreter BASIC and Compiler BASIC, the system time is
returned as an eight-character string of the form, "HH:MM:SS". Under
DOS 5 interpreter BASIC, both the system date and time is returned as a
17-character string of the form: .. MM/DD/YY HH:MM:SS". MM, DD, and
YY represent the month, day of the month, and year respectively, as kept
by the operating system. The HH, MM, and SS represent the hours (00-23),
minutes (00-59) and seconds (00-59) respectively, as retrieved from the
real time clock when the .. TIME$" command was actually executed. The
slashes ("f") and colons (":'") will always be present in the string, and a
space will always separate the date information from the time information.

The value returned from the "TIME$" command can be used in a manner
similar to the value returned from the "MEM" function. It may be used
directly (as in the statement PRINT TIME$), or may be assigned to a string
variable (as in A$=TIME$). The value returned by the "TIME$" command
will always be an eight-character or seventeen-character string.

CLS
PRINT TIME$
FOR I= 1 TO 10000 NEXT I
PRINT TIME$

266

BASIC Statements and Functions

TROFF, TRON TROFF, TRON

These statements are used to provide for runtime program trace
information.

TROFF
TRON

Compiler BASIC and Interpreter BASIC

During program development, it may be useful to trace the execution flow
of your program during debugging. TRON and TROFF allow you to
selectively control where in your program trace information will be
generated. After a ''lRON", the line number of each statement executed
will be displayed surrounded by braces. This trace information will cease
upon execution or the ''lROFF" slatement.

Under Compiler BASIC, ''lRON" acts similarly to interpretive BASIC
TRON. However, it prints source line numbers (if available) after each
statement is executed, not at just at the beginning of a source line.
"TROFF" turns program trace off. See the "NX" and "YX" compiler
directives for additional information.

267

BASIC Reference Manual

TYPE TYPE

This Compiler BASIC function obtains the type code of its argument.

Compiler BASIC

TYPE(exp) Function

exp Is a numeric or string expression.

TYPE returns the variable type code of the expression. These type codes
are as follows (Interpreter BASIC type codes are shown for comparison):

Variable Type Compiler Code Interpreter

integer 1 2
single precision 2 4
double precision 4 8
string 3 3

Arrays are slightly more complex. The type is equal to:

128 + (16 •dimension#)+ vartype

where vartype is one of the standard variable type codes listed above. So,
TYPE(A$(0)) = 128 + 16 • 1 + 3 = 147. Note that the array index ("0") is
arbitrary; it need only be within the dimensioned range.

268

BASIC Statements and Functions

UP UP

This compiler BASIC statement is used to scroll the video screen up one
line.

Compiler BASIC

UP Statement

UP scrolls the entire screen up by one line, clearing the bottom line. This
is equivalent to the "standard" screen scroll.

269

BASIC Reference Manual

USING USING

This compiler BASIC function is used to define formatted PRINT output.

Compiler BASIC and Interpreter BASIC

USING forma1$;explist Function

formal$ Is the format control string.

explist Is the expression list.

The compiler BASIC "USING., string function works equivalently to
Interpreter BASIC•s. "PRINT USING"; however, compiled "USING"
provides the ability to store and manipulate "USING., formatted data with
string handling insttuctions as its value may be assigned to a string for
subsequent manipulation. That makes this implementation much more
versatile than the "PRINT USING" scheme. Consider this brief example:

A$=USING "Ill.ff ";l.666,345.555,17.893
PRINT LEFT$(A$,12) :PRINT A$:W$=WINKEY$

USING•s input is any mix of numeric and string expressions coupled with
a string that controls the format of the output string. This format string is a
concatenation of individual expression field specifiers. The length of the
format string is limited IO 63 characters under DOS 5 and 79 for DOS 6.

"USING" processes the expressions one by one in a left to right manner,
building up ils output string as it processes each expression. For each
expression processed. a field specifier in the fonnat string expression is
needed. Should the end of the format string be reached. the field specifier
pointer is reset bac~ IO beginning of the format string. So:

USING .,,,.,,·,1.ssss,2.6666,3.9999

causes the format string "ffl.##" to be "recycled" three times. An error
will occur if a string field specifier is tried on a numeric expression. and
vice-versa. For additional details, see "PRINT USING" on page 213

270

BASIC Statements and Functions

USR USR

The USR statement will allow a BASIC program to branch to a user
written machine language subroutine. The syntax for the "USR" command
is:

Interpreter BASIC

vorioble=USRn(intvol)
vorioble=USRn(exp)

Function 15
Function 16

variable Must be a numeric variable, and in most cases
should be of integer type. If a value is to be returned
from the machine language subroutine, it may be
contained in this variable when the machine
language routine returns to BASIC.

n Is the user routine number (0-9) used to identify the
routine in question (user routines are defined with
the DEFUSR command). The routine number must
be represented as a numeric constant

intvol Is a value which will be passed to the user machine
language subroutine. It may be represented as a
numeric expression or a numeric constant, and must
be expressed as an integer value.

exp Is a value which will be passed to the user machine
language subroutine. It may be represented as any
string or numeric expression.

The USR command will allow you to jump to a machine language
subroutine from within your BASIC program. The machine language
subroutine will generally be resident in high memory, and the memory
used by the module must be protected, either using the DOS MEMORY
command, or by specifying the .. M" parameter when entering BASIC.

271

BASIC Reference Manual

Prior to issuing a .. USR" call, the starting address of the specific machine
language subroutine must have been defined using the .. DEFUSR"
command.

Once the "USR" call is perfonned, execution of your BASIC program will
be halted, and a jump will be done to the address specified in the
corresponding "DEFUSR" statement. Your machine language subroutine
will then take over, until a return to BASIC is performed in the machine
language module. Once this return to BASIC has been encountered, your
BASIC program will regain control.

Initiating a USR call

Suppose you have loaded and protected a machine language module. In
addition, you have defined this machine language module with the
following command:

DEFUSR5=&HF400

To perform a jump to this machine language module, the following
command may lf given:

XXo/o==USR5(1024)

Upon executing the above command, execution of the BASIC program
will be halted, and the machine language instruction at address X'F400'
wilt be executed. The value 1024 will be passed to the machine language
routine. The machine language routine will continue to be executed, until
a return to BASIC is encountered. If any value is to be returned from the
subroutine, it will be contained in the integer variable XX% when BASIC
regains control.

Passing values to and from machine language subroutines

In the above example, the value 1024 was passed to the machine language
subroutine. In order to utilize this value in the subroutine, the first code
block of the machine language routine should be one of the following:

CALL OA7FH DOS 5

272

BASIC Statements and Functions

LO HL,RETADR DOS 6
PUSH HL
LO HL, (2603H)
JP (HL)

RETADR

Executing the above code block as the first statement in the machine lan
guage subroutine will cause the value 1024 to be placed in the HL register,
with "H" containing die MSB, and .. L,, containing the LSB of the value.

When BASIC passes control to the USR, the Z80 registers contain values
you use to recover the argument value passed. Since DOS 5 BASIC allows
only an integer argument, and DOS 6 BASIC allows any type of argument,
these register values differ; they are set up as follows:

Register
A
IIL
DE

Contents
Type of value passed: 2, 3, 4, or 8
Pointer to numeric argument value
Pointer to string DCB if type=3

16

16

For integers, HL points to the Least Significant Byte (LSB); for single
precision, it's the LSB of the mantissa; for double precision, it's the third
most significant byte.

To return a value from a machine language subroutine to BASIC, you
should use one of the following code blocks as the last statement in your
subroutine:

JP

LO
PUSH

OA9AH

HL, (2605H)
HL

LD HL,VALUE
RET

DOS 5

DOS 6

After your machine language module executes the above code block,
control will return to BASIC (the statement following the USR call), and
the variable used in the "USR" call will be assigned the value that was in
the HL register pair prior to the JP or RET command. If no value is to be
returned from your machine language module, you may use a RET
command to return to BASIC.

273

BASIC Reference Manual

User Interface to SVCs

A user interface to the DOS SVC functions is provided under DOS version
6 Interpreter BASIC via the "USR" statement in BASIC. To use this
interface, establish an integer array with the first six elements containing
the following information that may be needed by the SVC:

Element 0:
Element l:
Element 2:
Element 3:
Element 4:
Element 5:

SVC number (Always needed!)
Value for register pair HL
Value for register pair DE
Value for register pair BC
Value for register pair IY
Value for register pair IX

The interface is accomplished by using a normally out of range "USR"
argument, USRl 1. To execute the SVC, use the syntax:

USRl 1 (V ARPTR(ARRA Y(O)))

For clarity, "ARRAY" has been used for the name of the array in the
example, but the actual name of the array used to pass the parameters
to USRll musfbe only one or two characters long. If the name of the
array is longerihan two characters, USRll can't check the array type bit
because of some technical details of the way .. V ARPTR" works. No "DEF
USR" statement is required. After the SVC executes, the register pairs will
be unloaded back into the anay. The AF register pair will be placed in
array position "O". If the anay is not an integer type, or if the SVC number
is either zero or greater than 127, an Illegal Junction coll error will occur.

The return condition of the SVC can be tested by checking the bits in
ARRA Y(O). Doing an "AND 64" will produce a non-zero value if the Z
flag is set. Doing an "AND 1" will produce a non-zero value if the Carry
Flag is set. For further explanation of DOS SVC usage and returned
values, refer to the DOS Programmer's Reference Guide. Following is a
short example of using the SVC interface.

100 DEFINT J,K:DIM J(S)' Important - integer
array only for SVC interface, must be a 1 or 2
character name
200 CLS:PRINT TAB(25)"SVC Demonstration Menu"
210 PRINT:PRINT TAB(25)"1) Set Scroll Protect"
220 PRINT TAB(25)"2) Toggle Caps Lock"

274

BASIC Statements and Functions

230 PRINT TAB(25)"3) Show DOS Version"
240 PRINT TAB(25)"4) Check Drive Ready"
250 PRINT:PRINT TAB(25);:INPUT "Make a selection
"; A$
260 IF A$ ["1" OR A$] "4" THEN 200
270 A=VAL(A$) :ON A GOSUB 1000,2000,3000,4000
280 GOTO 200
1000 CLS:PRINT"Set number of scroll protect
lines 0-7"
1010 PRINT:PRINT"O will cancel scroll protect
"; :INPUT A
1020 IF A [0 OR A] 7 THEN 1000
1030 J(3)=&H700 + A 'Register B=7, Register
C=line count
1040 J(O)=lS:X=USRll(VARPTR(J(O))) 'Execute
@VDCTL SVC
1050 IF A=O THEN RETURN
1060 FOR K=l TO 100:PRINT K;"Testing scroll
protect to 100":NEXT:RETURN
2000 CLS:J(O)= 101:X=USRll(VARPTR(J(O))) '
@FLAGS SVC to get keyboard flag
2010 K=PEEK(J(4)+10)' Get KFLAG value
2020 POKE (J(4)+10), K XOR 32 'Toggle Caps lock
bit
2030 INPUT"Type some characters to check Caps
lock, press ENTER to end ";A$
2040 RETURN
3000 CLS:J(O)=lOl:X=USRll(VARPTR(J(O)))' Get
flag table base, @FLAG SVC
3010 K=PEEK(J(4)+27)' Version number, base+27
3020 K=K-(&H60)' Earliest version was 6.0, K
will be Oto 3
3030 PRINT "This is DOS version 6 .";K
3040 PRINT:INPUT"Press ENTER to return";
A$:RETURN
4000 CLS:INPUT"Enter drive f to check Oto 7 ";K
4010 IF K [0 ORK) 7 THEN RETURN
4020 J(3)=K' Set drive number for SVC
4030 J(0)=33:X=USR11(VARPTR(J(O)))' @CKDRV SVC
4040 PRINT:PRINT"Drive";K;"has ";
4050 IF (J(O) AND 64)-0 THEN PRINT"no disk
mounted.":GOTO 4080
4060 PRINT"a disk mounted."

275

BASIC Reference Manual

4070 IF (J(0) AND 1)'""1 THEN PRINT"The drive is
write protected."
4080 PRINT:INPUT"Press ENTER to return
";A$:RETURN

This example program shows several methods of accessing infonnalion
not normally available from BASIC. To make effective use of the SVC
interface, you will need to have the Programmer's Reference Guide.

The @CK.ORV routine (lines 4000-4080) shows how the return status of
an SVC can be checked. The Z flag can be tested by doing an "AND 64"
against the array(O) position. If the result is zero, the Z flag was NOT set.
The CF (carry flag) can be tested in the same manner by doing an "AND
1 ". Again, a zero result means the flag was not set.

The Caps Ioele and DOS Version subroutines show how infonnation can be
referenced in the system flag area with the @FLAGS SVC. There are
several other flags and system storage areas that can also be referenced off
of the flag table base.

Certain SVCs, such as @CMNDI, @CMNDR, or setting the high memory
pointer must not be done. Generally, anything that can legally be done
from BASIC with @CMNDR can be done with the SYSTEM "command"
statement, and should not be attempted through the SVC interface.

Brief overview of BASIC SVC access of video screen

The following program provides a brief exposure to accessing the Model 4
video screen contents using the@VDClL service call of DOS 6.3 and the
USRI 1 interface provided in BASIC .•

100 DEFINT J,K:DIM J(5), S$(24): REH S$ holds 24
screen lines
110 RX$•"012345678901234567890123456789012345678
90123456789012345678901234567890123456789"
200 IR=VARPTR(RX$): REH get loc'n of buffer DCB
210 IF IR< 0 THEN IR• IR+ 65536!: REM Adjust
DCB location
220 IL• PEEK(IR+l) :IH=PEEK(IR+2): REH Get
address of string constant
250 CLS:FOR K • 0 TO 22: PRINT "This is a test
of line ";K:NEXT

276

BASIC Statements and Functions

300 FORK= 0 TO 23: REM Issue @VDCTL, function
9, 24 times
310 J(0) = 15: REM @VDCTL service call
320 J(l) = K * 256: REM Set row number into
register H
330 POKE VARPTR(J(2)),IL:POKE VARPTR(J(2))+1,IH:
REM Our 'buffer' into DE
340 J(3) = 9 * 256 + 1: REM function 9, video
line to buffer
350 X = USRll(VARPTR(J(O))): REM Invoke the SVC
360 S$(K) = LEFT$(RX$,80): REM Must use LEFT$ to
copy characters
370 NEXT
400 CLS:FOR K ~ 0 TO 23: PRINT S$(K);:NEXT: REM
Show what we read from screen
500 FORK= 0 TO 79
510 J(0) = 15:J(l) = K:J(3) = &Hl0O
540 X=USRll(VARPTR(J(0)))
550 C=(J(-) AND &HFF00)/256
560 PRINT CHR$(C);
570 NEXT

Line 100 declares the integer array, J(5), used to pass Z80 register contents
to/from the system SVC. The string array, S$(24), is declared and will be
used to store the 24 lines read from the screen.

Line 110 declares a string constant and initializes it so that it is 80
characters long. In order to use the line at a time video transfer function of
@VDCTL, the buffer must be below X'F400', the area of memory
swapped out to perform video and keyboard access. Using a string
constant guarantees that this 80-byte region will be sufficiently low in
memory to avoid any address complications.

Lines 200 and 210 obtain the address of the string constant's DCB and
adjust it to a positive value, as required.

Line 220 obtains the actual address of the string constant as stored in
memory; the low and high order address bytes are preserved so that they
may be transferred to the integer array of data passed to the SVC. Too bad
BASIC has no WPEEK function!

277

BASIC Reference Manual

Line 250 clears the video screen and displays 23 lines of data so that we
know exactly what is on the screen. This is done here for illustration
purposes only.

Lines 300-370 form the loop to issue the @VDC1L SVC 24 times; each
time a single screen line will be transferred.

Line 310 initializes the SVC number desired into the integer array.

Line 320 passes the desired row number into the integer array. Since the
row number is stored in register H, we must shift the small integer 0-23
left by 8 bit positions to align the value into register H. This is done by
multiplying the loop index value by 256.

Line 330 pokes the address of the string constant (our line buffer) into the
integer array for the "DB" value.

Line 340 establishes the VDC1L request as function 9 (transfer a 80-byte
video line) and specifies the direction to be screen to buffer.

Line 350 invokes the@VDC1L SVC by using the USRl 1 function.

Line 360 copies the result of the video line transfer into our string array
which holds the 24 lines, each line a separate array element. Note that the
LFFT$ function is being used to force a copy of the characters. If the
program used a simple assignment statement, such as S$(K)=RX$, only
the string address pointer in the S$ array would be altered since BASIC
assumes that string constants are not going to be changed; new strings
would not be generated and each array element would actually contain the
same result - the last line transferred.

Line 400 simply displays the result of the program's capture of the screen
lines.

Lines 500-570 read the top line of the video screen by the single character
"peek" function of @VDC1L and displays the result of each character
read.

278

BASIC Statements and Functions

VAL VAL

This function obtains the numeric value of the decimal number encoded in
ils string argument.

Compiler BASIC and Interpreter BASIC

VAL(exp$) Function

exp$ Is a string expression.

VAL converls an ASCII encoded decimal number to binary floating point
or integer numeric format. For example:

A$= "1.234": B$ = •4.55555551•: C$ = •156"

A= VAL(A$): B.,. VAL(B$): C.,. VAL(C$)

sets "A" equal to 1.234, "B" equal to 4.55555 (truncated down to single
precision from double precision), and "C" equal to 156.

279

BASIC Reference Manual

VARPTR VARPTR

This function obtains the absolute memory address of its argument.

Compiler BASIC and Interpreter BASIC

VARPTR(var)
VARPTR(#bufnum)

Function
Function I

var Is any numeric or string variable or array element.

bufnum Is an Interpreter BASIC file buffer number.

VARYfR is used to directly access variable data stored in memory. It
returns the address of the first byte of a variable's contents for the case of
numeric variables, or the address of the string data control block in the
case of string variables. These values may be useful to pass variable data
to a "USR" routine. Data control blocks for strings and arrays differ
between Interpreter BASIC and Compiler BASIC; the storage structure of
these conttol blocks is listed in the Technical Section.

VARPTR(T$) returns the address to the start of T$'s control block; which
is in the form: LB LEN (HB LEN for Compiler BASIC) LB PNlR HB
PN1R. WPEEK(VARPTR(T$)) returns the entire 16-bit length; without
WPEEK, it would be considerably nastier:

PEEK(VARPTR(T$)) + 256 • PEEK(VARPTR(T$)+1)

For example, supposing that the "LEN" function didn't exist in Compiler
BASIC. Then:

10 A$• "ENHCOMP"
20 PRINT "LEN(A$) • ";!SLEN(A$)
30 END
100 FUNCTION SLEN(T$)
110 RETURN WPEEK(VARPTR(T$))
120 ENDFUNC

280

BASIC Statements and Functions

This is a good example or creating a new function to fit a need (if LEN
wasn't already supported). Note the use of the exclamation point which
precedes the function's invocation. This is required by Compiler BASIC
for user defined functions and is explained in the section on FUNCTION
... ENDFUNC.

A variation on the use or Compiler BASIC's "V ARPTR" is the use or an
array's name without a subscript to return the address of the array's Data
Control Block (DCB). This is denoted as:

I arraynameo

Arrayname() returns the address of the array's DCB. For example:
TRIALS(), AO, .•.. See the "Technical Section" for details on Data Control
Block formats.

281

BASIC Reference Manual

WAIT WAIT

This DOS 6 Interpreter BASIC statement will suspend program execution
until a specified value is sensed at an input port. Its syntax is:

DOS 6 Interpreter BASIC

WAIT port,int 1 [,lnt2] Statement

portnum Is the Z80 CPU port to access; port can be in the
range <0-32767>, however the value used is port
modulo 256.

Intl A value to AND with the value of the portnum read.

lnt2 A value to XOR with the value of the portnum read.

Note: execution will continue when the result of the "XOR" and
"4ND" is non-zero.

WAIT can be used to freeze execution of your program until a particular
value is available at a CPU machine port. The int2 operand may be used to
invert selected bits of the port value read, while the inti operand may be
used to mask selected bits of the port. For instance, to invert all bits of the
port, use a value of "-1" for int2. Bits 4-7 of the port value may be
stripped off (i.e. ignored), by using a value of "15" (1 + 2+4+8) for int l.

Programmer's Note:

Under Interpreter BASIC, the value of portnum can actually range from 0
through 32767; the actual value used for the port determination will be
"portnum modulo 256". Thus, a portnum of 256 designates port O; a
portnum of 257 designates port 1. However, the high-order value will be
presented to the high-order address lines of the CPU address bus. This may
be useful in addressing internal and external ports of the 64180/ZlS0
processor which requires a high-order zero value to reference internal
ports and a high-order non-zero value to reference external ports.

282

BASIC Statements and Functions

WHILE WEND WHILE WHEN

These DOS 6 interpreter BASIC statements provide for looping control of
a program block. The syntax is:

WHILE exp
statements
WEND

Statement 6

Statement6

exp Is any numeric expression (usually boolean)

WHILE ... WEND is a looping construct found in some .. structured,.
languages such as PASCAL. Unlike °FOR ..• NEXT' and .. REPEAT .•.
UNTIL", the loop will not be executed if exp is initially FALSE (a zero
value). If exp is non-zero, the block of statements will be executed until
the "WEND", then control will branch to the "WHILE" for another
evaluation of exp. This control flow will continue to repeat until exp is
FALSE.

"WHILE" ... "WEND,. constructs can be nested as "FOR ••. NEXT"
constructs; each "WEND" will match up with its most recent 0 WHILE".

Example Program:

10 INPUT"Letter (A-Z) to stop for";S$
20 WHILE (T$=CHR$(RND(26)+64)) <> S$
30 PRINT T$,
40 WEND

This prints a random letter until the user-selected letter is encountered.

283

BASIC Reference Manual

WIDTH WIDTH

This DOS 6 interpreter BASIC statement establishes the logical width of
the print line. Its syntax is:

DOS 6 Interpreter BASIC

WIDTH [LPRINT,J size Statement

LPRINT Designates the width for the line printer; if omitted,
the size refers to the display width.

size Establishes the width as size.

The use of WIDTH is somewhat similar lo the chars parameter of the
DOS FORMS facility. Once you set the width of the printed line to a size,
a string of characters longer than size will wrap to the next line. One
signifreant difference is that if the current print line is not at the first print
position. and the string of characters to print is longer than the remaining
space until size, the printing will start on the next line.

If you have the DOS FORMS filter installed and active to the printer
device, and are using width to set the "LPRINT' width, FORMS' chars
parameter should be set to 255.

10 WIDTH 15: 'Set screen width to 15 chars
20 A$=STRING$(40,"*"): 'Gen 40-char string
30 PRINT A$: 'and print it
40 A$=STRING$(10,"f"): 'Gen 10-char string
50 PRINT "Testing";A$: 'Print 7 chars; A$
60 WIDTH 80: 'Reset width to 80 cols
RUN
***************.

Testing
ffffffffff

284

(wraps to 3 lines)

(only 8 positions left)
(forces A$ to new line)

BASIC Statements and Functions

WINKEY$ WINKEY$

This compiler BASIC function will wait for a keyboard entry and return
the value or the key which is pressed.

Compiler BASIC

WINKEY$ Function

"INKEY$" returns the last key pressed. WINKEY$ waits for a key to be
pressed and then returns it as "INKEY$", a one character string.
"WINKEY$" is essentially equivalent to:

A$="":WHILE A$=·":A$=1NKEY$:WEND

Example Program:

10 PRINT"Press any KEY to continue, <ENTER> to
loop"
20 A$=WINKEY$:IF A$=CHR$(13) THEN 10
30 PRINT"Exiting program"
40 END

285

BASIC Reference Manual

WPEEK WPEEK

This compiler BASIC function obtains the two-byte "word" stored at the
specified memory address.

Compiler BASIC

WPEEK(exp 16) Function

exp16 Represents a memory address in the range
<-32768 to 32767>.

WPEEK effectively "peeks" two bytes at a time, forming a word in
standard CPU format. The precise formula is:

WPEEK(exp) • PEEK(exp) + 256 • PEEK(exp+ 1)

"WPBBK" is useful for getting 16-bit memory addresses. For example, on
the lRS-80 Model I or III:

V • WPEEK(&H401E)

assigns to "V", the memory address of the screen character print driver
routine.

The corresponding poking statement, "WPOKB", is described elsewhere
in this manual.

288

BASIC Statements and Functions

WPOKE WPOKE

This compiler BASIC statement is used to place a l~bit word into a
memory location.

Compiler BASIC

WPOKE exp 16,exp 16 Statement

exp16 Specifies a memory address in the range
<-32768 to 32767>.

WPOKF. allows direct modification of any RAM location in memory •
.. WPOKE" stores two bytes at a time in conventional low order/high order
format into the specified address.

287

BASIC Reference Manual

WRITE WRITE

This statement is used to output data to the video screen or sequential
access (type "O") disk ftle.

DOS 6 Interpreter BASIC

WRITE[tbufnum,] [item, ...] Statement

bufnum Is a file buffer which references an open disk file
of type "O" to which the data is to be output.

item Is a "string literal" or a numeric / string expression;
a list of items may be provided.

"PRINT" is the normal facility used to display data on the video screen.
WRITE also prints data to the screen, but has some small differences. As
in "PRINT", omitting the item list generates an<ENTER>. With a list of
items, each data item output, except the last one, would be followed by a
comma; an <ENTER> is sent following the last item.

Numeric values which are negative are preceded by a minus sign;
however, contrary to .. PRINT', positive numbers are not preceded by a
blank. Strings are automatically enclosed by quotes.

You may use the •CWRITElbufnum,list" form to output the data to a disk
file. This facility is useful since it saves you from having to output explicit
commas in order to generate comma-delimited files.

Note the differences between "PRINT' and "WRITE" in the following:

10 DEFINT A-Z
20 READ A,B,C$
30 PRINT A,B,C$
40 WRITE A,B,C$
50 DATA 100,-200,"a string"
RUN

100 -200
100,-200,"a string"

288

a string

BASIC Statements and Functions

XFIELD XFIELD

The compiler BASIC XFIELD statement is used to assign the segments of
a type "X" file record buffer to strings.

Compiler BASIC

XFIELD bufnum,var,(exp)var$, •••

bufnum Is file control block number, 1-15.

var ls any non-string scalar variable.

Statement

exp Is the maximum length of the following
string variable, var$.

var$ Is any scalar string variable.

XFIELD is used to define the record structure of "X" type files. It fields
the record buff er into segments accessible by string variables, providing a
means to read and write information in an orderly manner from or to any
record in the file.

For the variables specified in the variable list, an integer takes two bytes to
store, a single precision four bytes, a double precision eight bytes, and
strings take the specified maximum length (given in the expression in
parentheses preceding the string variable name) plus two bytes for the
string length. String array elements are not permissible in the "XFIELD"
statement.

One advantage of using the extended file format is that the string length is
saved at the time of the write and a subsequent "GET" of that record will
restore the string of the same length. This is unlike conventional
"FIELDs" which pad unused characters with blanks. Note that if the string
length exceeds the maximum given by exp, only the maximum number of
characters in the string will be saved; all characters past that point will not
be saved to the file.

289

BASIC Reference Manual

The maximum record length permissible in XFIELDed type files is 32767.
Here is a sample "XFIELD" statement:

XFIELD 2,Ao/o,8##,(16)1NV$

Any subsequent "PUf" statements (PUT bufnum,recnum) will write the
current value of the variables "A%", "Bl#", and "INV$" into the specified
record. This particular "XFIELD" statement specifies an integer variable
(length 2), a double precision variable (length 8), and a 16-character string
(length 16+2). The associated OPEN"X" statement should reference a
reclen of 28.

290

Technical Information

Technical Information

BASIC Statements

Note: The codes enclosed in square brackets indicate the BASIC
supporting the particular statement. These codes are: !=Interpreter BASIC,
l5=DOS 5 Interpreter BASIC, 16:=DOS 6 Interpreter BASIC, C=Compiler
BASIC, C5=D0S 5 Compiler BASIC, C6=DOS 6 Compiler BASIC.
When no code is shown, the statement is supported by all BASICs.

ALLOCATE [CJ

BKOFF[CJ

BKON [CJ

CALL [l6J

CHAIN [16J

CLEAR

CLOSE

CLS

CMD [15]

COMMAND[CJ

COMMON [16]

COMPL[CJ

CONT [I]

DATA

Allocates file buffers

Disable BREAK key

Enable BREAK key

Access user routine

Invoke/merge subsequent program

Set aside bytes for string storage;
Zero / clear variables

Closes file buffer(s)

Clear screen, home cursor

Invoke extra commands; exit to DOS

Mechanism to define start of user command

Passes selected variables to a chained program

Complement graphics pixel at (x,y); if pixel
SET then RESET it, otherwise SET it

Used to continue a STOPped program

Define a list of data

291

DEC [C]

DEFDBL

DEFFN

DEFINT

DEFSNG

DEFSTR

DEFUSR[I]

DIM

DOWN[C)

DRAW[C)

ELSE

END

ENDCOM[C]

ENDFUNC[C)

ENDIF

ERASE[l6]

292

BASIC Reference Manual

Decrement integer variable by one

Variables included in the list will default to
double precision if their types are otherwise
unspecified

Single line user defined function

Same as DEFDBL, except causes a default to
integer

Same as DEFDBL, except causes a default to
single precision

Same as DEFDBL, except causes a default to
string type

Establish linkage to user machine language
routine

Dimension specified arrays

Scroll entire screen down by one line

Using integer array as controller to set, reset, or
complement turtle graphics on screen

Defines default branch location if "IF'
expression false

Stop program execution

Specify end of user defined command definition

S~ifY,. end of multi-line user defined function
definition

Tenninate "IF' block

Delete an array

ERROR

FlELD

FOR

FUNCTION [CJ

GET

GOSUB

GOTO

IF

INC [CJ

INPUT

INPUT#

INPUT$ [16]

INPUT@(l5]

INVERT [CJ

JNAME[C]

KEY (CJ

KILL [I]

Technical Information

Force an "artificial., run-time error of error code
exp8

Fields file buffer into blocks of strings

Start a "FOR ... NEXT" loop consbuct

Start multi-line user function definition

Reads one record from a file into its buffer

Call subroutine at program line or label

Branch to program line or label

Define beginning of conditional execution
program block

Increments integer variable by one

Accept user keyboard input for variable values

Assign variable(s) information read sequentially
from specified disk file

Input a string of characters without echo

Fielded screen input

Inverts all graphics on the screen

Define line label

KEY array for SORTing purposes. KEYs
specified in least to most significant sorting
order. In other words, last array KEYed is
primary sorting key. Multiple keys separated by
commas allowed

Delete specified filespec from disk

293

LEFf[C]

LEI'

BASIC Reference Manual

Scroll entire screen left one character

Set variable equal to algebraic or siting
expression

LINEINPlTf Assign siting variable from verbatim keyboard
input without default .. r prompt

LINEINPlTf# Assign siting variable from line of disk input

LINESPAGE [C] Sets printed lines per page

LMARGIN [C] Sets left hand margin

LOAD Loads the program file specified by filespec$

LPRINT Send list of information to printer

LSET Sets var$= exp$, with left justification

MERGE [I] Merge ASCII soun:e program

MID$()= Overlay var$ starting at position expl with exp$
for a maximum of e:xp2 characters

NEXT Define end of "FOR ... NEXT" loop

ON Usilg expression, jumps to specified ft in list

ON BREAK [CJ Ca~ branch to specified line or label if
BREAK key hit and break scan active (BKON
mode)

ON ERROR Causes a branch to the specified line or label if
(run-tmte) enor occ~

OPEN Opens a file using the specified buffer ft

OPTION BASE (16) Sets base index of arrays

OUT Send e:xp2 out to port e:xpl

294

PAGELEN [CJ

PAINT (CJ

PLOT (CJ

POKE

POP [C]

POSFIL [C]

PRINT

PRINT#

PUT

PZONE [CJ

RANDOM

RDGOTO[C]

READ

REM or'

REPEAT[C]

RESET (15,C]

RESTORE

RESUME

RETURN

Technical Information

Sets physical lines per page

Color a bounded shape

Plots a line or a box on the screen

Load memory location expl with exp2

Delete last GOSUB

Position to specified point in sequential file.
Functional with both .. O" and .. I" type files

Output list of information to screen

Output list of information to disk file

Writes the buffer contents to a file

Define or clear printer TAB stops

Initializes the random number generator

Positions DATA pointer to specified line
number or label

Reads a list of variables from DAT A statements

Define a remark

Define beginning of REPEAT/UNTIL construct

Tum off a graphics point at x,y

Restores "DAT A" pointer to data statement

Used at the conclusion of an error trapping
routine to jump to the specified line number

Return from subroutine

295

RIGHT(CJ

RMARGIN[C]

RSET

ROT(C]

RUN

SCALE(C]

SCLEAR[C]

SET{l5,C]

SETEOF (15,C]

SORT[C}

SOUND (l6,C6J

STOP

SWAP(l6,C]

SYSTEM

SZONE[CJ

SWAP[l6,C]

TAG [CJ

THEN

TROFF

298

BASIC Reference Manual

Scroll entire screen right one character

Set printer right margin

Sets var$= exp$, with right justification

Set rotation offset (in 256 degree units) for
subsequent DRAW statement executions

Loads and executes the program specified

Set scalar line multiplier (in 1/256 units) for
subsequent DRA Ws.

Initialization command for 0 SORT". Use before
any KEYing/f A Ging done

Set graphics point at x,y

Set random file's end-of-file

SORT of KEY ed and TAGed arrays.

Generate a tone

Stops execution of the program and prints
source line number if available

Swap contents of two like-typed variables

Invoke a DOS command string; exit to DOS

Define or clear screen TAB stops

Exchanges varl and var2' s values

TAG array for SORTing purposes

Defines branch location for true 0 1F" expression

Tum program trace OFF

TRON

UNTIL [C]

ur [CJ

USR [I]

WAIT [16]

WHILE [16]

WEND [16

WIDTH [16J

Wl'OKE[CJ

WRITE (16]

XFIELD (CJ

String functions

Technical Information

Turn program trace ON

Defines end or "REPEAT ... UNTIL .. construct
Program execution branches back to last
executed "REPEAT" if exp<> 0

Scroll entire screen up by one line
("conventional .. scroll)

Invoke machine language routine

Pause until specified input from port

Initiate a looping construct

Terminate "WHILE" construct

Establish width or print line

Does two byte poke of exp at addr

Output comma tenninated data

Field "X" -type files

Note: The codes enclosed in square brackets indicate the BASIC
supporting the particular function. These codes are: I=Interpreter BASIC.
15=DOS 5 Interpreter BASIC, 16::DOS 6 Interpreter BASIC. C=Compiler
BASIC, C5=DOS 5 Compiler BASIC, C6=DOS 6 Compiler BASIC.
When no code is shown, the function is supported by all BASICs.

BIN$ [CJ

CIIR$

DATE$[16,C]

ERRS$ [16]

Convert exp to 16 digit base 2 representation

Convert ap8 to one byte string

Obtain system date

Obtain DOS error string

297

HEX$[16,C]

INKEY$

LEFf$

MID$

MKD$

MKI$

MKS$

OCT$[16]

RIGHT$

SPACE$[16)

STR$

STRING$

TIME$

USING [CJ

WINKEY$[C]

Numeric functions

BASIC Reference Manual

Convert e:xpl6 to four digit hexadecimal
representation

Last key pressed on keyboard

Return exp left most characters in exp$

Return substring of string

Convert exp to eight-byte string representing a
double precision Floating Point number

Convert exp to two-byte string representing an
integer number

Convert exp to four-byte string representing a
single precision Floating Point number

Convert exp to octal digit string

Return exp right most characters in exp$

Obtain string of spaces

Return ASCII DECIMAL equivalent of exp

Return ex.pl long string of exp2 characters

Obtain system time (and date)

Return string using varlist, formatting
determined by format$. Takes the place of the
"PRINT USING ... " feature in interpretive
BASIC. Performs equivalently

Wait for key and then return as one-char string

Note: The codes enclosed in square brackets indicate the BASIC
supporting the particular function. These codes are: l=lnterpreter BASIC,

298

Technical Information

I5=DOS 5 Interpreter BASIC, 16=DOS 6 Interpreter BASIC, C=Compiler
BASIC, C5=DOS 5 Compiler BASIC, C6=DOS 6 Compiler BASIC.
When no code is shown, the function is supported by all BASICs.

&Bd0 ... d15

&lldddd

&Oddddd

ABS

ADORA [CJ

ASC

ATN

CDBL

CINT

cos

CSNG

CURLOC[C]

CVD

CVI

CVS

EOF

Accept digits in base 2 representation

Accept digits in base 16 representation

Accept digits in base 8 representation

Returns the absolute value of the expression

Absolute memory address of "label" or line#

Returns the ASCII numeric code of the first
byte of the string expression

Returns the arctangent (in radians) of the
expression

Converts expression to a double precision value

Converts expression to an integer value

Returns the radian cosine of expression

Converts expression to a single precision value

Current cursor position (0-1023)

Directly copies eight-byte string to a double
precision numeric expression

Directly copies two-byte string to an integer
expression

Directly copies four-byte string to a single
precision expression

Returns .. -1" if at end of specified sequential
input me, "0" otherwise

299

ERL

ERR

EXISTS [C]

EXP

FIX

FRE

INP

INSTR

INT

LEN

LOC

LOF

LOG

LPOS [I]

MEM

PEEK

POINT [15,C]

POS

RND

300

BASIC Reference Manual

Line number of the latest error

Code of the latest error

Rel.UrnS "-1" if jilespec$ exists.

Returns the natural antilog of expression

Retums the integer value of the expression

Returns amount of free string space (or MEM if
exp= 0)

Returns eight bit value read from port exp

Returns "0" if exp]$ does not contain exp2$,
else returns the position of exp2$' s first
occurrence in exp]$.

Return greatest integer less than exp

Length of exp$

Returns last record accessed in specified
random file

Returns number of records in specified file

Natural log of exp

Obtain print head relative position

Amount of free memory

Eight bit contents of memory address exp 16

Returns "-1" if specified point is SET

Intra-line cursor position

Returns a random number between 1 and exp

ROW

SGN

SIN

SPC [16]

SQR

TAN

TYPE[C]

USR [I)

VAL

VARPTR

WPEEK[C]

array() (CJ

Technical Information

Obtain cursor row number

Signum function (1 if exp>0, 0 if exp=(), -1 if
exp<0)

Returns radian sine of exp

Generate spaces in "PRINT"

Returns square root of exp

Returns radian tangent of exp

Returns variable type of exp

Invoke user routine and obtain result

Changes ASCII DECIMAL string to internal
numeric binary storage format

Absolute memory location of the specified
variable or array element

Returns two byte contents (addr) + 256(addr+l)

Address of the DCB of the specified array.

Numeric BINARY operators

Algebraic Operators

.. n,, AftB A to the 8th power C5,I5 .. ,.,,
A"B A to the 8th power C6, 16 ... ,, A*B A multiplied by B .. ,,,
NB A divided by B

.. +" A+B A plus B
H Jt A-B AminusB

In the A"B and ft operators, if A is negative, B must be integer, otherwise
an Illegal function call error will prevail.

301

BASIC Reference Manual

Boolean operators (-1 if true, else 0)

"="' A=B If A equals B
.. <,, A<B If A is less than B
">" A>B If A is greater than B

"<>" A<>B If A does not equal B
.. <=" or "=<" A<=B If A less than or equal to B
">="or"=>" A>=B If A greater than or equal to B

Logical BU-WISE operators

''AND" AANDB A logically ANDed with B

"OR" AORB A Logically ORed with B

"XOR" AXORB A logically XORed with B 16,C

''NOT" NOTA l's Complement of A

"EQV" A EQV B (A AND B) OR (NOT(A AND B)) 16

"IMP" A IMP B A AND NOT B 16

String operators

Comparisons are done on a character by character basis. They return
numeric boolean values: - l if true, 0 otherwise.

··=t'f A$=B$ A$,B$ precise equivalence check
"<" A$<B$ A$ ordered less than B$
">" A$>B$ A$ ordered greater than B$
··<=" A$<=B$ A$ ordered less than or equal to B$
">=" AS>=B$ A$ ordered greater than or equal to B$
''<>" A$<>B$ A$ is not equal to B$

Variable storage format

The following information describes the control block of arrays and the
data storage format of the four supported variable types. For scalars, a

302

Technical Information

pointer to the data area is returned by the "V ARPTR" function. For ar
rays, the Compiler BASIC "V ARPTR" function or its array counterpoint,
"arraynameO" returns a pointer to the data control block. The Interpreter
BASIC V AR.PTR function returns a pointer to the specified array element;
the data control block always precedes the first element of the array.

Numeric Storage Format
Integer Storage Format Description of contents
LSB HSB Value of the integer, 2-bytes

Single Precision Format
LSB MSB HSB EXP

Description of contents
Value of the single, 4-bytes

Double Precision Format
LSB MSB ... MSB HSB EXP

Description of contents
Value of the double, 8-bytes

String Control Blocks
Compiler BASIC

String Control Block Description of contents
DCB+O&l (LSB MSB) Length of string
DCB+2&3 (LSB MSB) Pointer to the stored string

Interpreter BASIC
String Control Block Description of contents
DCB+O Length of string
DCB+1&2 (LSB MSB) Pointer to the stored string

Array Control Blocks
Compiler BASIC

Array Data Control Block Description of contents
DCB+O Number of dimensions
DCB+ 1 Array type: l=integer,

DCB+2&3
DCB+4&5
DCB+6&7 on up

2=single prec, 3=string,
4=double precision.
Pointer to data area
Number of data entries
Size of each dimension

303

BASIC Reference Manual

Interpreter BASIC
Array Data Control Block Description or contents

DCB+O Array type: 02=integer,

DCB+1&2
DCB+3&4
DCB+S
DCB+6&7 on up

04=single prec, 03=string,
08=double precision.
ASCII-coded array name
Number of data elements
Number of dimensions
Size of each dimension

Precision of math library

The math library supports operations using integers, single prec1s10n
floating point variables and numbers, and double precision floating point
variables and numbers. All supplied functions of Compiler BASIC support
both single and double precision arguments. This means that the result of
functions such as .. LOG .. , "EXP", "COS", etc., is the precision of the
argument used (single or double). Supplied functions of Interpreter BASIC
support only single precision arguments and results.

The range and precision of the three numeric types is as follows:

304

number type
integer
single prec
doubleprec

range
-32768 to 32767
-1.7e+38 to 1.7e+38
-1.7d+38 to 1.7d+38

precision
5 digits
6-7 digits
15-16 digits

Technical Information

Fite buff er allocation

For each Interpreter BASIC file buffer designated via .. F=" parameter, 564
bytes of memory will be provided for DOS 6 and 290 bytes (546 if Block
is ON) for DOS 5. This memory is utilized as follows:

Buffer off set
0

1
2-33 (2-51)

34-289 (52-307)
290-545 (308-563)

Intended use
File type: l="I", 2="0", 3="R"
("E" is converted to "O")
Unused
System's File Control Block
File's 256-byte 1/0 buffer
File's user record buffer

Note: Numbers in parentheses refer to DOS 6 BASIC

For each Compiler BASIC file buffer designated via the ALLOCATE
statement, 592 bytes of memory will be provided. This memory is utilized
as follows:

Buff er offset
0

I
2- 3

4
5

6- 7
8- 9

10- 11
12- 13

14
15

16- 79
80-335

336-592

Intended use
File type: "X", "I", "O", or "R"
("E" is converted to "0")
Record length of non-"X" file modes
Record number of last PUT or GET
Unused
Internal buffer offset
Unused
Record length of "X" file mode
Pointer to XFIELD data if "X" file mode
Last file record number accessed
CLOSE flush flag (<>0 = flush)
Unused
System's File Conrrol Block
File's 256-byte 1/0 buffer
File's user recoltl buffer

305

BASIC Reference Manual

Compiler BASIC Support Subroutine Descriptions

The most commonly used routines in a compiled program are in the
library SUPPORT/DAT ftJe; when required, individual support subroutines
are appended onto a compiled program as needed. The routines extracted
from the library and compiled into your program are identified during
compilation by the numbers following the message:

APP£NOING SUPPORT SUBS

The following list notes the general function of each support subroutine.
This list is provided only to help you in understanding the subroutine
numbers which follow the above stated message. It is beyond the scope of
this manual to provide detailed instructions on interfacing to these routines
at the assembly language level.

000-1/0, Interpret code stream,
error trapping.

001 - POP stacked operands and
set up for math routines.

002 - Floating point addition.
003 -Print evaluated <'Xpression.
004 .J>OP operand and place in

the math memory
accumulator.

005 - Floating point
multiplication.

006 - Floating point divtiion.
007 - Floating point subtraction.
008 - Arithmetic OR (inle:gers).
009 - Arithmetic AND (m\egers).
010 - Compare the last two

stacked operands for less
than.

011 - Compare the last two
stacked operands for greater
than.

012 -Compare the last two
stacked operands for
equality.

013 - Arithmetic XOR (integers).

306

014 -Convert the word on the
stack to an integer number.

015 - Interface to the@DA TE and
@TIME DOS functions.

016 - Load the following string
literal onto the string stack.

017 -This performs the NEXT
command of BASIC.

018 -Specified variable read from
current DAT A statement.

019 - The two topmost strings on
the string stack are
concatenated.

020 - "MID$(exp$, A, B)".
021 - Load the following string

variable onto the string
stack.

022-Handles LET S1$=S2$.
023 - Handles "ON exp

GOTO/GOSUB".
024 - Allocate tempy string space.
025 - Check the stack pointer for

SP< (PRGTOP)+256.
026 - Test expl$ <> exp2$.
027 - "RIGHT$(exp$,exp)".

Technical Information

028 - "LEFf$(exp$,exp)".
029 - "S1RING$(expl,exp2)".
030 - "STRING$(exp,exp$)".
031 - "CHR$".
032 - "INKEY$"
033 - ">=", numeric
034 - "<=", numeric
035 - "=", string
036 - ">", string
037 - "<", string
038 - ">=", string
039 - "<=", string
040 - "LEN", numeric
041 - Resolve array varptr.
042 - DIMension an array.
043 - "INPUT" accessory

subroutine.
044 - "LINEINPUT" accessory

subroutine.
045 - Performs "TAB(n)".
046 - Transfer resident math RAM

accumulator to stack.
047 - Prints the integer number

contained in HL.
048 - CVD executor.
049- CVS executor.
050 - CVI executor.
051 - MKD$ executor.
052 - MKS$ executor.
053 - MKI$ executor.
054 - Handles "BIN$(exp)".
055 - Handles "HEX$(exp)".
056 - "<>" routine, numeric.
057 - LSET executor.
058 - RSET executor.
059 - Handles "OPEN ... ".
060 - GET executor.
061 - PUT executor.
062 - unused.
063 - unused.
064 - unused.

065 - Performs all graphics
commands.

066- Handles "VAL(var$)".
067 - Handles "STR$(exp)".
068 - "USING" string function.
069 - "WINKEY$" function.
070 - "INSTR" function.
071 - "END" routine.
072 - Miscellaneous J/0

subroutines.
073 - "PRINT#" setup.
074 - "CLOSE" routine.
075 - Re-initializes video outpuL
076 - "LINEINPUT#" routine.
077 - "LOF" routine.
078 - "EOF" routine.
079 - File manipulation: LOAD,

RUN, KILL, EXISTS,
SYSTEM

080 - STOP executor.
081 - "INPUT#" routine.
082 - Sets up current buff er and

associated variables.
083 - "LOC" executor.
084 - Resolves DCB pointer given

a filespec$ or buff er
expression.

085 - Handles "MIDSO = exp$".
086 - ".POSFIL" assertor

subroutines.
087 - SORT routine.
088 - Performs "PRINT,";

effectively T AB(255).
089 - Single/double precision

math routines.
090- Handles "ERROR exp".
091 - Pushes defined

function/command local
variables onto the stack.

092 - Supports command/function.
093 - Restores local variable

values.

307

BASIC Reference Manual

094 - Handles "PRINT <CR>".
095 - internal support code.
096 - Handles "PRINT@".
097 - Creates a clean suing list

entry.
098 - "USING" initialization.
099 - "USING" post processing.
100 - "FRE(var$)" executor.
101 - "RANDOM" executor.
102 - "RANDOM exp" executor.
103 - "ROW" function executor.
104 - "ASC" function executor.
105 - "LPRINT" initialization.
106 - "SW AP" executor.
107 - "KEY" executor.
108 - "TAG" executor.
109 - "SCLBAR" executor.
110 - 111NP" executor.
111 - "PEEK" executor.
112- "WPEEK" executor.
113 - "CURLOC" executor.
114 - "POS" executor.
115 - "ABS" executor.
116 - 11A 1N" executor.
117 - "CDBL" executor.
118 - "CINT" executor.
119 - "COS" executor.
120 - "CSNG" executor.
121 - "ERL" executor.
122- "ERR" executor.
123 - "EXP" executor.
124 - "FIX" executor.
125 - "INT" executor.
126 - ''SZONF./PZONE" executor.
127 - "LOG" executor.
128 - "MEM" executor.
129 - 11RND" executor.
130 - "SON" executor.
131 - "SIN" executor.
132 - "SQR" executor.
133 - "TAN" executor.
134 - "UNTIL" executor.

308

135 - a Z-80 "RET" instruction.
136- integer "LET".
137 - Handles "varl"var2".
138 - "NOT" executor.
139 - "BRL" executor.
140 - Negate the value contained

in the math memory
accumulator.

141 - "CLS" executor.
142-166 - Various routines which

deal with floating point
stack operations.

167 - Used by END.
168 - "ALLOCATE" executor.
169 - "FIELD" executor.
170 - "IF' executor.
171 - "XFIELD" executor.
172-RESUME line#.
173 - "GOTO" executor.
174 - "GOSUB" executor.
175 - Load the "READ" pointer.
176- "RETURN" executor.
177 - "POP" executor.
178 - Load BASIC line number

with the following word.
179 - internal use.
180 - "OUT" executor.
181 - "DEC'' an integer variable.
182 - "DEC" an integer array

elemenL
183 - "INC" an integer variable.
184 - "INC" an integer array

element.
185 - Handler for INVERT,

LEFf, RIGHT, UP, and
DOWN.

186 - Handles setting of ROTation
and SCALE.

187 - unused.
188 - Z80 routine call.
189 - Handles lRON, TROFF,

BRKON, and BRKOFF.

Technical Inf ormatlon

190- internal CINT.
191 - strobes keyboard for

<BREAK>; performs
TRON display.

192 - load integer variable to math
memory accumulator.

193 - load single precision
variable to math memory
accumulator.

194 - load double precision
variable to math memory
accumulator.

195 - zero the math memory
accumulator.

196 - load integer number to math
memory accumulator.

197 - load single precision number
to math memory
accumulator.

198 - load double precision
number to math memory
accumulator.

199 - load integer array element to
math memory accumulator.

200 - load single precision array
element to math memory
accumulator.

201 - load double precision array
element to math memory
accumulator.

202 - equate integer variables.
203 - equate single precision

variables.
204 - equate double precision

variables.
205 - equate integer variable with

integer array element.
206 - equate single precision

variable with integer array
element.

207 - equate double precision
variable with integer array
element.

208 - equate integer array
elements.

209 - equate single precision array
elements.

210- equate double precision
array elements.

211 - equate integer array element
with integer variable.

212 - equate single precision array
element with integer
variable.

213 - equate double precision
array element with integer
variable.

214 - load integer variable to
stack.

215 - load single precision "
variable to stack.

216 - load double precision
variable to stack.

217 - numeric integer "LET''.
218 - numeric single precision

"LET'.
219- numeric double precision

"LET'.
220 - load integer array element to

stack.
221- load single precision array

element to stack.
222 - load double precision array

element to stack.
223 - integer array element

"LET'.
224 - single precision array

element "LET'.
225 - double precision array

element "LET'.
226 - integer "FOR" initialimtion.

309

BASIC Reference Manual

227 - single precision .. FOR"
initialization.

228 - double precision "FOR"
initialization.

229 - push ctDTent code pointer for
"REPEAT' & "FOR".

230 - Handles "POKE exp1,exp2".
231 - Handles .. WPOKE

exp1,exp2".
232 - Begin execution of Z-80

code.
233-255 - unused.

310

Compiler BASIC's zoo Assembler

Complier BASIC ZOO Assembler Introduction

Compiler BASIC, on top of being of a full BASIC compiler, is also a full
Z80 assembler, with special numeric functions to return the "V ARPTR" of
a BASIC variable and the absolute memory pointer to the beginning of
any line. No list or Z80 instructions is given here. It is assumed that as an
experienced Z80 programmer, you already have at least one such list.

280 Source Code Inclusion In Programs

Z80 assembly language can be inserted at any point in the source program.
The "Z80-MODE" Compiler Directive switches the language context to
Z80 mode.

EssentiaJly, in Z80 mode, standard Z80 mnemonics talce the place of
BASIC instructions. Most standard Z80 assembler pseudo-Ops, such as
DEFB, are supported. As with BASIC instructions, multiple statements
can be placed on a single line, separated by colons, ":"s. This is a typical
example or a combination BASIC/ Z80 program:

10 DEFINT X
20 FOR X=O TO 255
30 GOSUB "SCREEN"
40 NEXT
SO END
55 '
60 "SCREEN"
70 Z80-MODE
80 LD HL,3COOH:LD DE,3C01H:LD BC,03FFH
90 LD A, (&(X)) :LD (HL),A:LDIR
100 HIGH-MODE
105 '
110 PRINT@O,X:RETURN

This sample program fills the Model I or Ill screen memory with every
ASCII code, with each ASCII code number printed in the upper left hand
comer. Its speed it rather impressive for a "BASIC'' program.

Line 60 defines a label, 'SCREEN'.
Line 70 switches the compilation context to 280 AL
Lines 80-90 define the Z80 subroutine itself. ,
Line 100 switches the compilation context back to BASIC.

311

BASIC Reference Manual

Access of BASIC variables and line numbers

The previous sample program illustrates that you can reference a BASIC
variable using the syntax,

&(vamame)

You can also reference the address of a BASIC line number (an actual
line-numbered line) by the syntax,

&(tllne_number)

For example, the Z80 code,

lD Hl,&(SCALAR)

loads the address of the BASIC variable scalar into the HL register,
whereas the Z80 code,

LO Hl,(&(SCALAR))

is an indirect 16-bit load of the memory contents of the variable into the
HL register. If SCALAR was an integer, register HL would then contain
the integer value. The reference material for COMMAND and
FUNCI10N contain more examples of variable access.

Assembler Expression Evaluation

Expressions are evaluated algebdically. "4+START"IOH" is evaluated as
.. ST ART" lOH plus 4", not in the linear fashion of "(4+ST ARl)"' 1 OH".

Binary Operators

The following tables describe the available assembler binary operators in
algebraic priority order (top to bottom = highest lo lowest):

312

Compiler BASIC's Z80 Assembler

Algebraic Operators

"<" expl < exp2
">" expl > exp2
".MOD." expl.MOD.exp2

"*"
u/"

H+O

ct "

".OR."
".AND."
''.XOR."

expl • exp2
expl /exp2

expl +exp2
expl - exp2

exp l.OR.exp2
exp l .AND.exp2
exp1.XOR.exp2

Hoolean Operntors

Expl shifted left 'exp2' time
Exp2 shifted right 'exp2' times
Integer remainder of
expl/exp2

Productofexpl,exp2
Quotientofexpl,exp2

Sum of exp 1, exp2
Expl minus exp2

Bit logical "OR" of exp 1, exp2
Bit logical "AND" of exp 1, exp2
Bit logical "XOR" of expl, exp2

return -1 if true, else 0

(' if' = • if and only if. All have equivalent weights and less
priority than any of the algebraic operators)

".EQ." expl.EQ.exp2 TRUE if expl equals exp2
or".=."

".NEQ." exp 1.NEQ.exp2 TRUE if expl DOFS NOT
or".<>." equal exp2

".LT." expl.LT.exp2 TRUE if exp I less than exp2
or ... <."

0 .GT." expl.GT.exp2 TRUE if expl greater than
or".>." exp2

".LTEQ." exp1.LTEQ.exp2 TRUE if expl is less than or
or".<=." equal to exp2

".GTEQ."expl.GTEQ.exp2 TRUE if expl is greater than
or".>=." or equal to exp2

313

BASIC Reference Manual

Operand Bases

The following table describes the allowable numeric operand bases:

No suffix:

.. V., suffix:

.. H,, suffix:

.. O"suffix:

Base 10 =Decimal= Regular number

Base 2 = Binary
ex: 1011 V = 11 decimal

Base 16 = Hexadecimal
ex: 4000H = 16384 decimal

Base 8 = Octal
ex: 500 = 40 decimal

Non-standard Z80 Instructions

The following table defines the Compiler BASIC support of non-standard
Z80 assembler instructions.

314

DUPI operand ("operand = operand*2 + 1 '')
where operand is any of: -- r8 (A,B,C,D,.E,H.L)

(HL), QX+d), (IY +d)

Compiler BASIC's 280 Assembler

Assembler Pseudo-OPs

The following table describes the assembler Pseudo-Ops supported:

DEFB / OEFM /DB/ OM exp8 or 'textstring'
(multiple operands allowed:

Define byte(s) separate with commas.
Example: DB 'PLAYER l',13)

OEFW / OW exp16 <,exp16, ... >
Define word(s)

OEFS exp16
Leave 'exp16' bytes untouched

OEFF np16 <,exp8>
Fill 'expl6' bytes with OOH. Optionally fill with
'exp8' i£ given

ORG exp16 and DISORG
Start a separate machine language load block with
starting load address given by exp 16. The "current" load
address is saved. DISORG terminates the separate load
block and re-establishes the old program counter so that
normal compilation can continue. NOTE: Only the last
PC is saved; nested ORGs are NOT advised.

Ex.: ORG 401EH:DW ALTVID:DISORG
'Re-vector video char. display routine

315

BASIC Reference Manual

Compiler BASIC error codes

Compile-time Errors

316

Error Code
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

192
193
194

Meaning
Dynamic data table overflow
"ENDIF' terminators missing
"ENDIF' without "IF"
Multiply defined User Function
Multiply defined Command Definition
Itlegal label or symbol
Undefined label or symbol
Undefined User Command
Undefined User Function
Undefined line number
Expression type mismatch
Missing Operand
Syntax Error
Multiply defined symbol or label
Nested *GETl"'INCLUDE file disallowed

(ZS0) Expression error
(Z80) Relative branch out of range
(ZS0) rand field OVERFLOW

Error Codes

RUNTIME errors

Error Code
0
2
6
8

10
12
16
18
20
24
26

32-100
104
106
108
110
112
114
122
124
128
130
134
136
138
162
178
180
241
242
254

Meaning
Next without For
Syntax error
Out of Data
Illegal Function Call
Numeric Overflow/Underflow
Out of free memory
Array subscript out of dimensioned range
Attempt to re-dimension an array
Division by 0
Type mismatch
Out of string space
Special disk error; equal to DOS error code + 32
Illegal buffer#
File not in directory
Access does not match file mode
File already opened
Field overflow (XFIELD)
"X" record number overflow
Disk space full
End of file encountered
Bad file name
GET or PUT attempted with non "R" file mode
Directory space full
Write protected diskette
File access denied due to password protection
Bad record length for access specified
Attempt to open file with different LRL
Buff er not open
SORT attempted without sort keys given
Too many sort keys or tags
Bad file mode (not "r', "O" or "R ..)

317

BASIC Reference Manual

Interpreter error codes

Incorporated in non-disk BASIC (ROM, where applicable) are various
error messages and error codes. These error codes are provided for the user
so that certain types of errors may be "trapped" for, and the execution or
the BASIC program in question will not be interrupted. You may
determine the exact natme of an error by utilizing the ERR and ERL
commands.

BASIC will have in its error dictionary, disk error codes, along with the
error codes classically found in ROM BASIC. The error dictionary for
DOS 5 Interpreter BASIC is contained in the file BASIC/OV3. For this
reason, BASIC/OV3 must always be present on a disk in the system when
programming in BASIC.

This part of the manual will list the error codes and messages, and will
include a brief description of each error. The user should realize that the
descriptions given for each error are not all inclusive. That is to say, the
example circumstances given for a particular error may not encompass all
circumstances which could generate the error in question.

Before we begin giving these error codes, a few general points should be
made. BASIC's error dictionary is not as large as the error dictionary
found in DOS. For this reason, several different types or disk related errors
may produce the same BASIC error message. To pinpoint the exact nature
of a disk related error, it may be beneficial to determine the DOS
interpretation of an error. After a disk related error occurs, you may
determine the associated DOS error message by performing a CMD"E" in
DOS version 5 BASIC, or use the ERRS$ function in DOS version 6
BASIC. This may be useful when, for instance, you get the BASIC error
message "Disk 1/0 [nor", as several different occurrences may cause this
type of error. For more information, refer to CMD"E" and ERRS$.

318

Error Codes

The following tables show Interpreter BASIC error codes. Note that all
error codes given here will be the value returned by the ERR command.

Error Code Meaning
15 16
0 1 Next without For
2 2 Syntax error
4 3 Return without GOSUB
6 4 Out of Data
8 5 Illegal Function Call

10 6 Overflow
12 7 Out of memory
14 8 Undefined line number
16 9 Subscript out of range
18 IO Re-dimensioned array; Duplicate Definition
20 II Division by 7,ero

22 12 Illegal direct
24 13 Type mismatch
26 14 Out of string space
28 15 String too long
30 16 String formula too complex
32 17 Can't continue

18 Undefined user function
34 19 No RESUME
36 20 RESUME without error
38 21 Unprintable error
40 22 Missing operand
42 Bad file data

23 Line buff er overflow
26 FOR without NEXT
29 WHILE without WEND
30 WEND without WHILE

319

BASIC Reference Manual

Error Code Disk Errors
15 16

100 50 Field overflow
102 51 Internal error
104 52 Bad file number
106 53 File not found
108 54 Bad file mode
110 55 File already open
114 51 Disk 1/0 error; Device l/0 error
116 58 F'tle already exists
122 61 Disk full
124 62 Input past end
126 63 Bad record number
128 64 Bad file name
132 66 Direct statement in file
134 67 Too many files
136 68 Disk write protected
138 69 File access denied
140 Blocked file error
142 70 System command aborted
144 Protection bas cleared memory

Enor Deflnitldns

Bod fde Mode indicates that a file is being accessed improperly. This may
occur when, for instance, you try to access a file opened as a random file
in a sequential manner (i.e. issue an INPUT# command after opening a file
in the random mode).

Bod fde Nome will be generated when the file specified in an OPEN,
SA VE, WAD, RUN or MERGE command does not conform to the rules
governing valid DOS filespecs.

Bod File Number will occur when a file is opened using an illegal buff er
number (a buffer number greater than the total number of files specified
when entering BASIC), or fielding a buff er which does not correspond to
an open random fde.

Bod Record Number will be issued when record number 0 (or some other
illegal record number) is accessed in a random file.

320

Error Codes

Blocked File Error will occur if you attempt to OPEN a random file with an
LRL of other than 256 after entering BASIC and specifying the parameter
BLK=OFF.

Can'l continue results when a CONT statement is entered at a point not
witJ1in the scope of the CONT statement.

Direcl Slalemenl in rile will be generated when a LOAD is performed of a
file that is not a BASIC program (usually when a LOAD of a data file is
attempted). This type of error will also be generated when a BASIC
program which was saved in ASCII is loaded, and a line in the program
exceeds 240 characters in length.

Disk r ull will indicate that all of the free space on a disk has been
consumed. In some cases, the occurrence of a disk becoming fulJ (i.e. all
of the disk space being consumed) may generate a Disk Write Protected
error.

Disk 1/0 Error or Device 1/0 error will occur when an input from or an
output to a disk file is unsuccessful. A typical DOS error message which is
associated with the it is a Parity Error.

Disk Write Protected usually indicates that a write has been attempted to a
write protected disk. Other types of errors may also generate a Disk Write
Protected error. If the disk in question is not write protected, use CMD"E"
to determine the exact error.

Division by zero will be generated when a division calculation has a zero
divisor.

field Overflow indicates that the number of bytes fielded for a random file
exceeds the record length of the file (as specified in the OPEN statement).

rile Access Denied may be generated when a password protected file (either
a data file or a program file) is referenced using an incorrect password.

rile Already [xisls will be generated when using an OPEN"xN" command if
the file already exists, or a NAME statement target exists.

File Already Open will be generated when you try to OPEN a file using a
buff er that corresponds to an already open file. Note that no error will be

321

BASIC Reference Manual

generated if the same ftle is in an open state using two different buffers at
the same time (This practice is NOT advised).

File Nol Found indicates that the file being referenced does not exist. This
error may occur after an OPEN"I", OPEN"EO", OPEN"OO", OPEN"RO",
LOAD or RUN command has been issued.

FOR wilhoul NEXT occurs when a FOR statement has no corresponding
NEXT staternenL

Hlegol direcl is issued when a command is entered in immediate mode
which is improper for that mode.

Illegal function cofl indicates any of a number of errors relating to bad
parameters of a function (e.g. a negative argument to LOG or SQR).

Input Post End applies only to sequential files opened for input, and will
occur when a read of the file is attempted after all data in the file has been
input.

Internal Error will occur when the error in question cannot be interpreted.
One way it may be generated is to issue a CMD"L" command, and the file
to be loaded is not found.

Line buff er overflow will occur when an INPUT exceeds the size of the input
buffer.

Missing operand will be generated when a required operand of an operator
is omitted, e.g ... IF A AND".

NEXT without FOR will be generated when a NEXT statement is encountered
without a corresponding FOR statement active.

No RESUME will be issued when the code block of an error-trapping ON
ERROR GOTO routine does not have a RESUME statement.

Oul of dola will be generated when a READ statement is encountered with
either a missing DATA statement or no unread data remains in a DATA
statement.

322

Error Codes

Out of memory occurs when a program along with its run-time data space
usage exceeds the memory available to it.

Out of string space is generated insufficient free memory exists to allocate
the designated string.

0verrlow results when a calculation exceeds the largest representative
number, regardless of sign.

Protection llos Cleared Memory will be generated i£ an attempt is made to
illegally access an EXECute only program without using the proper
password. The program and variables will be cleared from memory.

Re-dimensioned array or Duplicate definition is generated if a DIM statement
is encountered for an array already dimensioned by a preceding DIM
statement.

R[SUM[without error will be generated when a RESUME statement is
encountered outside of a pending ON ERROR GOTO error trap.

RHURN without GOSUB will be generated when a RETURN statement is
encountered without a corresponding GOS UB statement active.

String lorrnulo loo complex can occur in some very complex string
expressions which require that the expression be partitioned into smaller
expressions.

String loo long occurs when the result of a string expression would exceed
the maximum character length limit for a string.

Subscript out of range will be generated when an array subscript which
exceeds the bounds declared in the DIM statement is encountered.

Syntax error indicates a programming construct error in the specified
offending line.

System Command Aborted will occur if a DOS command called by the
CMD"command" or SYSTEM"command" function is manually aborted.

323

BASIC Reference Manual

Too Many Files will occur when an attempt is made to add another extent to
a ftle when all directory entries have been used. This type of error will be
very uncommon.

Type mismolch is generated when a string variable or expression is used
when a numeric variable or expression is required, or vice versa.

Undefined line number occurs when the target line number of a GOTO or
GOSUB, for example, is not present in your program.

Underined user function will be generated when a USRn is invoked without
a corresponding DEFUSR definition of "n".

Unprintable error will occur if an error other than one detailed in this list is
encountered.

WEND without Wllll[will be generated when a WEND statement is
encountered without a corresponding WIDLE statement

WHIL[without WEND will be generated when a WHILE statement starting a
looping block has no closing WEND statement.

324

Index

I,

3,27,29,30,101,126,179,208,
215

#, 3,27,IOl,177
#, in USING, 214

$

$, 3,27,IOI
$$, in USING, 214

%

%, 3,27,101,178,208,245
%, in USING, 215

&

&, 254,312
&, in USING, 215
&B, 67,299
&H, 133,272,275,277,299
&O, 180,299

•
*,21
**$, in USING, 214
**, in USING, 214
*ENDIF, 149
*GET,51,55

INDEX

•IF, 149
*INCLUDE, 51,55.246,253

I

/BAS extension, 5

@

@CALADR, 247
@CK.DRY, 276
@CMNDl,276
@CMNDR,276
@EXIT,258
@pos, 140,155,204
@VDClL, 275,277

\

\ in USING, 215

A

"· 257,301,308
/\Ml\, in USING, 214

6

64180, 139,193,282

A

abbreviated commands, 19
ABS, 62,299,308
absolute value, 62
addition, 30 I ·
ADORA, 63,299
ALLOCATE,

64,119,163,170,177,185,190
,203 ,246,291,308

AND, 180,275,282,302,306,313

325

BASIC Reference Manual

apostrophe as remark, 223
appending lines, 44
Appending support subs, 50
arc-tangent, 66
array allocation, 12
array control block, 303,304
array dimensions, specifying,

105
array subscript, 192
array, sorting, 82,192,250,263
arrays, eliminating, 112
AS, 31,120,163,168,177,190,246
ASC, 65,138,146,299,308
ascending, 250
ASCII me, 42,45
ASCII fonnat, 16,72
ASCII program, 171
ASCII value, 138
assembler, 12
assembler Pseudo-Ops, 315
assembly language, 58,311
assign a value t9 a variable, 154
A TN, 66,299,308
AUTO, 19,20,44
automatic input mode, 20

B

Bad File Mode, 320
Bad File Name, 320
Bad File Number, 320
Bad parameters, 29
Bad Record Number, 320
BASIC compiler, 10
BASIC line numbers, 34,37
BASIC/CMD, 4
BASIC/HLP, 4
BASIC/OVl,4
BASIC/OV2, 4,26,32
BASIC/OV3, 4,26,82,318
BASIC/OV4, 5

326

BC/CMD, 10
BIN$, 13,68,181,297,307
binary digits, 68
binary number, 67
BKOFF, 69,183,291
BKON, 69,183,291
Blocked File Error, 321
blocked file mode, 6,8
box, 197
branching, 132,182
BREAK, 44,52
BREAK key,

12,13,57,58,81,90,138,183,2
91,309

BREAK key control, 69
BREF/CMD, 31
BRKOFF,308
BRKON,308
BRL, 183,308
BSORT, 192,263
buffer address, obtaining, 280
buffer partitioning, 119

C

CALL, 70,291
calling subroutines, 130
Can't continue, 321
Caps lock, 276
cassette, 262
cassette baud rate, 6
cassette tape 1/0, 9,83
CDBL, 71,299,308
CED/CMD, 10
CHAIN, 72,87,239,291
CHRS, .

63,74,146,224,238,252,277,
297,307

CINT, 75,299,308,309
CLEAR, 76,78,190,240,252,29 l
CLOAD, 18

clock display. 83
CLOSE,

78, 121. t 77,190,246,291,307
closing open fl.les, 26
CLS,

79, I09, 124,242,275,291,308
CMD, 80,239,291
CMD"A", 78,81
CMD"B",81
CMD"D",81
CMD"E", 82,318
CMD"I", 78,82,110
CMD"L", 82,161
CMD"N", 29,82
CMD"O",82
CMD"P",83
CMD"R", 9,83,263
CMD"S", 78,83
CMD"T", 9,83,263
CMD"V",33
CMD"X", 31,32,83
CMDFILE, 263
color, 195
comma, explicit, 207
COMMAND, 225,247,253,291
Command-line compiling, 53
commands, user-defined, 48
COMMON, 72,87,291
comparisons, 302
compiler directives, 12
compiling a source program, 50
COMPL,

89,109,124,197,227,244,291
complement a pixel, 89
conditional execution, 135
CONT, 90,110,258,291
continuing a program, 90
convert to double precision,

70,71,94
convert to integer, 75,95
convert to single precision,

92,96

INDEX

converting numeric to hex
string. 134

copy, 19 ,26,36
Copyright, ii
cos, 91,124,265.299.304,308
cosine, 91
CPU port, 139,193,282
CREATE, 163
Creating new file, 50
cross reforence. 10,31,46
cross reforence, generating,

58,83
CSAVE, 18
CSNG, 92,299,308
CURLOC, 93,237,299,308
cursor, 19,155,202,205,291
cursor position, 202
cursor position, obtaining, 93
cursor, obtaining position of,

237
CVD, 94,176,299,307
CVI, 95,178,299,307
CVS, 96,179,299,307

D

DATA,
97,221,222,229,263,291,306

data list, positioning, 221,229
data list, reading, 222
DATE$, 99,297
date, system, 266
debugger, 81
DEC, 100,292,308
DEFFN, 73
default file extension, 6,7
DEFB, 315
DEFDBL, 3,73,101,292
DEFF, 315
DEFFN, 102,126,292
defining new commands, 84

327

BASIC Reference Manual

DEFJNT,
3,73,101,109,236,240,274,2
92,311

DEFM,315
DEFS,315
DEFSNG, 3,73,101,292
DEFSTR, 3,73,101,240,292
DEFUSR, 104,133,272,292
DE.FW, 315
DELETE, 19,21
delete, 36
deleting the current program, 26
delimiter, 166,204
delimiter, PRINT#, 207
delimiter, string input, 210
descending, 250
Device 1/0 error, 321
DIM,

105,109,112,150,192,231,23
6,252,263,274,292,307

DIM statement, 12
Direct Statement in File, 321
Direct statement in me, 17
directive prefix, 54
directives in your source, 55
directory of mes, 44
disk file, deleting, 24
Disk Full, 321
Disk I/0 Error, 321
Disk Write Protected, 321
DISORO,315
division, 301
Division by zero, 321
DOS command, 262
DOS command, invoicing, 82
DOS commands, invoicing, 80
DOS error, 51
DOS error code, 52
DOS error message, 82
DOS error, obtaining, 116

328

double precision,
3,12,66,91,176,235,249,257,
268,304

DOWN, 107,292,308
DRAW, 108,236,243,292
DUPI,314
duplicate a line, 26
Duplicate definition, 323

E

EDIT, 2,19,22,37,78
edit commands, 22
edit string, 40
editing Compiler BASIC, 34
editing line numbers, 34
Editing of Interpreter BASIC, 15
editor, 10
ELSE, 244,292
encoded format, 16
END,

44,52,90,110,182,201,246,2
58,292,307,308

ENDCOM, 84,225,247,254,292
ENDENC, 149
ENDFUNC, 126,281,292
ENDIF,292
EnhComp, 1
ENLOOP, 149
ENTER, logical, 40
EOF, 111,299,307
EQ,313
EQU, 55,149
EQV,302
ERASE, 112,292
ERL, 113,183,257,300,308,318
ERR, 114,257,300,308,318
ERROR, 36,115,184,293,307
error code, 114
error codes, 316,318
error control, 115,184,230

error message, 116
error message, waiting for, 58
ERRS$, 116,297,318
Execute only, 8
EXISTS, 117,300,307
exit, 262
exit from BASIC, 6
exit from the editor, 37
exit to DOS, 110,291
EXP, 118,164,300,304,308
exponential, 118
expression, 34
expressions, 13
extending files, 188

F

FACTORIAL, 85,127
PCB, 186
Fibonacci, 98,221,229
FIELD,

119,129,163,167,176,177,18
9, l 90,238,246,293,308

field length, 121
Field Overflow, 321
Field overflow, 121
fielding a record buffer, 289
File access denied, 321
File already exists, 188,321
File already open, 321
file buff er allocation, 305
file closing, 78
file control blocks, 64
file input, 141,143,157
File not round, 26,187,322
file, checking if available, 117
file, direct, 217
file, random access, 238
file, viewing, 45
file, writing, 288
Files, 5

INDEX

files, direct, 189
files, directory of, 44
files, extending, 188
files, list directed, 189
files, maximum number of, 5
files, opening, 185
finding keywords, 27
finding variables, 27
AX, 122,300,308
FOR,

146,183,198,236,283,293,31
0

FOR ... NEXT, 12,123,224
FOR without NEXT, 322
FORMS, 160,194,234,284
fonns control, 46
PRE, 125,300,308
free memory, 170
FUNCTION, 126,281,293
function, 61
function name, 102
functions, 13,47
functions, multi-line, 126
functions, user-defined, 102

G

garbage collection, 154
GET,

129,162,189,218,245,246,28
9,293,307

G0,37
GOSUB,

130,201,231,275 ,293,308,31
1

GOTO,
l I l,132,146,230,293,308

graphics,
108,148,195,197,199,236,24
3,244,291,292,295,296,307

graphics commands, 89

329

BASIC Reference Manual

GT, 313
GTEQ, 313

H

HEX$, 13,134,181,298,307
hexadecimal number, 133
IBGH,6,9
high level support code,

suppressing, 58
IBGH$, 5,53,76,80,276
lilGH-MODE,

13,54,86,128,149,247,254
lilTAPE, 9

I

IF, 293,308
IF ... ENDIF, 55
IF ..• THEN ... ELSE, 135
Illegal direct, 322
Ulegal function call,

26,28,29,1§4,257,274,301,3
22

IMP,302
INC, 100,137,293,308
INJECT,56
INK.BY$, 138,285,298,307
INP, 300,308
INPUT,

117,140,155,224,293,307
Input past end, 111,142,322
input variable list, 102
INPUT#,

141,157,187,203,210,293,30
7

INPUT$, 143,293
input, waiting for, 282
INPUT@, 144,293
inserting a load file, 56
INSTR, 145,300,307

330

INT, 147,300,308
integer, 3,12,178,268,304
integer function, greatest, 14 7
integer truncation, 122
integer, decrementing, 100
integer, incrementing, 137
interactive RUN mode, 59
Internal Error, 322
INVERT, 148,293,308
invoking BASIC, 5
invoking user commands, 84

J

JNAME, 149,293

K

KEY, 131,250,293,308
keyboard entry, waiting for, 285
keyboard input, 138,140,144,155
keyword, 27 ,28
KILL, 24,41,293,307

L

label, 55,132
label table, 48
LFFT, 151,294,308
LFFT$, 152,175,277,298
LEN, 153,280,300,307
length of names, 2
LET, 154,294,306
library, 10
Line buffer over0ow, 322
line label, 130,149
line number,

21,27,28,132,171,308
line number address, 63
line number suppression, 57
line number table, 49

line number zero, 30
line number, error, 113
line numbers, access from

assembler, 312
line numbers, adding, 35
line numbers, BASIC, 37
line numbers, deleting, 36
line numbers, editor, 37
line numbers, generated, 54
line numbers, generating, 58
line numbers, hiding, 35,36
line numbers, removing, 35
line numbers, showing, 35,36
line range, 40
line, last, 34
line, top, 34
LINEINPUT, 155,294,307
LINEINPUT#, 157,187,294,307
lines, displaying, 45
lines, erasing, 73
LINESPAGE, 159,294
LINK, 56
LIST, 2,8,19,25,42,56
list, 44
LIST OCA TE, 19
listing the source program, 56
literal character, 214
LUST, 8,25,43
LMARGIN, 160,294
LOAD, 7,9,15,161,294,307
loading a load file, 82
loading a program, 15,239
loading address, default, 53
loading source text, 41
LOC, 162,300,307
local directives, 53,54
LOP, 163,300,307
LOG, 118,164,300,304,308
logarithm, 164
LOG0,108
loop index, 123,124
looping, 224,283

INDEX

LOW,6,9
LPOS, 165,300
LPRINT,

13,165,166,204,256,264,284
,294,308

LPRINT USING, 213
LSET,

119,163,167,176,177,178,19
0,238 ,246,294 ,307

LT, 313
LTEQ,313

M

machine language, 271
machine-language routine, 70
margin, printer, 160,234
MEM, 125,170,266,300,308
Mem,5
MEMORY,271
memory address, 63,280
memory protection, 5
memory space, available, 125
memory usage, 45
memory, altering the contents

of, 200
memory, free, 170
memory, peeking, 286
memory, poking, 287
memory, protecting, 53
memory, viewing, 196
MERGE, 7,15,17,171,294
merging a program, 72
message, compilation, 57
messages, printing, 58
Microsoft, 2
MID$,

152,173,175,233,238,298,30
6,307

MIDSO=, 294
Missing operand, 322

331

BASIC Reference Manual

MKDS, 94,168,176,298,307
MKIS, 95,163,168,178,298,307
MKS$, 96,168,179,298,307
MOD,313
Move,27
move,43
multiplication, 301

N

names, 2
negativeindex,123
NEQ, 313
NEW,26,43
NEXT, 198,230,283,294,306
NEXT without FOR, 322
NO,53,57
No RESUME, 322
NOLIST,56
Nomenclature, 1
NOPRT,57
NOT, 302,308
Not a BASIC program, 32
number, convert to string, 259
number, random, 235
numeric formats, USING, 214
numeric function, 298
NX, 57,69,183,267

0

object file, suppressing, 53
object program, suppressing, 57
OCT$, 181,298
octal number, 180
ON,294,306
ON ... GOSUB, 182
ON ... GOTO, 182
ON BREAK, 294
ON BREAK GOTO, 69,183,257
ON ERROR, 294

332

ON ERROR GOTO,
52,113,114,115,184,230

OPEN, 64,78,169,185,294,307
open files, 73, t 10,240,242
OPEN"E", 141,206
OPEN"I", 111,141,206
OPEN"O", 141,188,191,203,206
OPEN"R", 163,177,190,246
OPEN"X", 190,290
opening existing files, 188
opening new files, 188
opening random access files,

189
opening sequential files, 187
operand bases, 314
operators, binary assembler, 312
operators, boolean, 302
operators, boolean assembler,

313
operators, logical, 302
operators, numeric, 301
operators, string, 302
OPTION BASE,

73,105,112,192,263,294
OR, 85,128,275,302,306,313
ORG,315
OUT, 193,294,308
Out of data, 322
Out of memory,

27 ,32,81,240,323
Out of memory error, 7
Out of string space, 240,323
output, redirecting, 216
Overflow, 323
overflow, 118

p

page length, 194
PAGELEN, 194,234,295
PAINT, 195,295

PEEK, 63,196,275,286,300,308
PLOT, 195,197,295
POINT, 199,227,300
POKE, 200,275,295
POP, 130,201,231,295,308
port, 193
port input, 282
port, input from, 139
POS, 202,300,308
POSFIL, 187,203,295,307
precision or numbers, 304
prime number, 221,229
PRINT,

13,57,204,256,264,284,288,
295

print data, 166
print position, 165
PRINT USING, 213,270
print width, 284
print wnes, 219
PRINT#,

141,187,203,206,256,295,30
7

PRINT# USING, 213
PRINT@, 93,243,308,311
printed lines per page, 159
printer, 165,194,219,234
printer listing, suppressing, 57
printer output width, 31
printer status, 83
printing lines, 43
printing your program, 25
program branching, 132
program debugging, 267
program invoking, 239
Program Not Found, 30,32
protected mode, 32
Protection has cleared memory,

8,323
PRT,58

INDEX

PUT,
129,163,169,177,189,190,21
7,295,307

PZONE,
166,205,219,264,295,308

R

radians, 91,249,265
RAM, 200,287
RANDOM,

89,220,228,235,295,308
random,224
random access file,

119,162,163,167,178
random access file, reading, 129
random access file, writing, 217
random access files, truncating,

245
random number, 220,235
random number, seeding, 220
Random Record Access, 186
RDGOTO, 97,203,221,229,295
Re-dimensioned array, 323
re-entering BASIC, 6
READ, 97,203,222,263,295,308
READMF/fXT, l
record length, 185
record number, 129,162,163,217
REF/CMD, 10,46,58
references, finding, 27
REM, 223,276,295
remark, entering a, 223
REMOVE,24
renaming a disk file, 26
RENUM,2,29
renumbering, 82
renumbering a BASIC program,

29
renumbering BASIC Jines, 43
REPEAT, 283,295,310

333

BASIC Reference Manual

REPEAT ... UNTIL, 124,224
Replacing existing ftle, 50
replacing lines, 44
reserved word, 2
RESET,

89,109,148,197,227,244,295
RESTORE, 97,221,229,295
RESUME, 184,230,295,308
RESUME without error, 323
RET, 70,308
RETURN,

84,126,130,201,231,247,275
,295,308

return to DOS, 37,81
RETURN without GOSUB, 323
RIGHT, 232,296,308
right justified, 238
RIGHT$, 175,233,298
RMARGIN, 234,296
RND,

13,q,220,224,228,231,235,25
2Jp(),308 ..

ROT, b6,243,296,308
rotated.figures, 108
ROW, 237,301,308
royalty payments, 59
RSET,

l 19,167,176,178,238,296,30
1

RUN,
7 ,8,15,44,78,165,239,262,29
6,307

Runtime errors, 52

s

S/CMD, 10,59
SAVE, 7,9,16
saving space, 59
saving your program, 45
SCALE, 243,296,308

334

scientific notation, 214
SCLEAR, 131,250,296,308
screen print, 81
screen print zones, 264
scroll, 107,151,232,269,292,296
Search,28
search and replace, 46
searching text, 37,45
Sequential Access, 186
sequential access file, 288
sequential file input, 141,157
sequential file, positioning, 203
sequential ftle, writing, 208
sequential ftle, writing strings,

209
SET,

89,109,124,148,197,227,244
,296

SETEOF, 245,296
SGN, 89,228,248,301,308
sign, 248
SIN, 124,265,301,308
sine, 249
single precision,

3,12,66,91,118,179,235,249,
257,268,304

Single Stepping, 8
SORT, 131,250,296,307
sorting a string array, 82
SOUND, 253,296
sound generation, 253
SPACE characters, 256
SPACE$, 255,256,298
SPC, 256,301
SQR, 257,301,308
square root, 257
stack, 76
stack, popping, 201
statements, 13,61
STEP, 124,198,236,264
STOP, 44,52,90,258,296,307
storing data, 97

storing programs, 16
STR$, 176,179,259,298,307
string, 3,12,268
string control block, 303
string formats, USING, 215
String formula too complex, 323
string function,

152,173,175,233,255,259,26
0,266,270,297

string input, 143,144
string length, 3,153
string length limit, 12
String not found, 37
string operators, 302
string search, 145
string to integer, 65
String too long, 323
string value, 279
STRING$, 13,190,260,284,298
string, octal, 181
string, one-character, 74
sub-string, 145,152,175,233
subroutine, 271,306
Subscriptoutofrange,323
subtraction, 301
support routines, 51
SUPPORT/DAT, 10,56,306
SVC,274
SW AP, 261,296,308
symbol table, 4 7 ,48
Syntax error, 323
SYS1EM,

80,163, I 90,246,262,296,307
System Command Aborted,

80,323
system date, 99
system time, 266
SZONE, 166,205,264,296,308

INDEX

T

TAB, 166,204,264,274,307
tab positions, 264
TAB positions, setting, 219
TAG, 131,250,296,308
TAN, 265,301,308
tangent, 265
TEMP/BAS, 11,34,44,51
TEMP/CMD, 44,51,59
terminate your program,

110,258,262
terminating AUTO, 21
terminator, 256
terminator, PRINT, 204
THEN, 244,275,296
TIME$, 266,298
TOP, 159
tokenization, 42
tokenized, 45
tone generation, 253
Too Many Files, 324
trigonometric function,

91,249,265
TROFF, 267,296,308
TRON, 57,58,267,297,308
turtle graphics, 108,292
TYPE, 268,301
type code, 268,273
type declaration, 27
Type mismatch. 210,324

u

Undefined line number. 240,324
Undefined user function, 324
Unprintable error, 324
UNTIL, 224,283,297.308
UP, 269,297,308
user subroutine, defining, 104

335

BASIC Reference Manual

USING,
166,205,213,236,270,298,30
7,308

USR, 70,104,271,280,297,301
USRl 1, 274,277

V

VAL, 210,275,279,301,307
variable name, 2,27,28
variable storage format, 302
variable type, 3
variable type, declaring, 101
variables, 47
variables, access from

assembler, 312
variables, clearing, 76
variables, listing active, 33
variables, passing, 73,87,239
variables, swapping, 261
V ARP'IR, 70,277,280,301,303
video screen scroll,

107,151,232,269
video screen zones, 264
video screen, clearing, 79

w

WAIT, 282,297
warranty, 11
WEND, 283,297
WEND without WHll..E, 324
WHILB, 283,297
WHILE without WEND, 324
WIDTH, 284,297
WINKEY$,

109,146,195,285,298,307
WPEEK, 280,286,301,308
WPOKE, 200,287,297,310
WRlTB, 288,297
write, 45

336

X

XFIELD, 121,191,218,297,308
XOR, 275,282,302,306,313

y

YS,58
YX,58,267

z

Z180, 139,193,282
Z80, 58,273
Z80 assembler, 12,311
Z80 Assembler mode, 13
Z80 assembly language, 128
Z80 source code, 12
Z80-MODE,

13,54,63,86,128,149,247,25
3,311

